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Some Logistics
● Users are muted upon joining Zoom (can unmute to speak)
● Please change your name in Zoom session

○ to: first_name last_name 
○ Click “Participants”, then “More” next to your name to rename

● Click the CC button to toggle captions and View Full Transcript
● GDoc is used for Q&A (instead of Zoom chat)

○ https://tinyurl.com/mtva7dar
● Slides and videos will be available on the Training Event page and CSA 

Summer Program page
○ https://www.nersc.gov/users/training/events/introduction-to-nersc-resources-jun2023/
○ https://cs.lbl.gov/careers/summer-student-and-faculty-program/2023-csa-summer-progra

m/summer-program/
● Apply for a training account if no NERSC account or MFA not setup yet

○ https://iris.nersc.gov/train, and use the 4-letter code "aO7N"

https://tinyurl.com/mtva7dar
https://www.nersc.gov/users/training/events/introduction-to-nersc-resources-jun2023/
https://cs.lbl.gov/careers/summer-student-and-faculty-program/2023-csa-summer-program/summer-program/
https://cs.lbl.gov/careers/summer-student-and-faculty-program/2023-csa-summer-program/summer-program/
https://iris.nersc.gov/train
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Outline
● NERSC and Systems Overview
● NERSC Online Resources
● Connecting to NERSC
● File Systems and Data Management / Transfer
● Software Environment / Building Applications
● Running Jobs 
● Data Analytics Software and Services
● Hands-on: Compiling and Running Jobs on Perlmutter



  

NERSC and Systems Overview
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NERSC is the Mission HPC Computing Center for 
the DOE Office of Science
● NERSC deploys advanced HPC and data systems for the 

broad Office of Science community
● NERSC staff provide advanced application and system 

performance expertise to users
● Approximately 9,000 users and 900 projects
● Over 2,000 publications cite using NERSC resources per 

year
● Founded in 1974, focused on open science
● Division of Lawrence Berkeley National Laboratory
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NERSC Systems Roadmap

                                            

2013

NERSC-7: 
Edison
Multicore 
CPU

NERSC-8: Cori 
Manycore CPU
NESAP Launched: 
transition applications 
to advanced 
architectures

2016

2024

 NERSC-9: Perlmutter
CPU and GPU nodes 
Continued transition of 
applications and support for 
complex workflows

2021

NERSC-10:
Exa system

2028

Increasingly energy-efficient architectures

NERSC-11:
Beyond
Moore
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Cori (retired 5/31/2023)
9,600 Intel Xeon Phi “KNL” manycore nodes
2,000 Intel Xeon “Haswell” nodes
700,000 processor cores, 1.2 PB memory
Cray XC40 / Aries Dragonfly interconnect
30 PF Peak

28 PB
Scratch

700 
GB/s

2 PB
Burst Buffer

1.5 
TB/s

120 PB
Common 

File 
System

275 TB
/home

100 GB/s

5 GB/s

DTNs, Spin, Gateways

2 x 100 Gb/s
SDN

50 GB/s

Ethernet & IB Fabric
Science Friendly Security
Production Monitoring

Power Efficiency

LAN

NERSC Systems 

HPSS Tape
 Archive
~200 PB

 Perlmutter
1,536 NVIDIA A100 accelerated nodes
4 A100 GPUs & 1 AMD ‘Milan’ CPU per node
384 TB (CPU) + 240 TB (GPU) memory
HPE Cray Slingshot high speed interconnect
World’s 7th most powerful supercomputer
140 PF Peak
Pre-production system

35 PB
Scratch

5 
TB/s



  

NERSC Online Resources
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Classic NERSC Page
● https://www.nersc.gov
● Science, News, Publications
● Contact Us
● Live Status (MOTD) 

https://www.nersc.gov/live-status/
motd/

● NUG (and Slack)
● Training Events 

https://www.nersc.gov/users/train
ing/events/

○ New Users, Using Systems, 
GPUs, Programming Models, 
Performance Tools, 
Applications, Data Analytics, 
ML/DL, Workflows, and 
Services, …

https://www.nersc.gov
https://www.nersc.gov/live-status/motd/
https://www.nersc.gov/live-status/motd/
http://www.nersc.gov/users/training/events/
http://www.nersc.gov/users/training/events/
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https://www.youtu
be.com/c/NERSC
Training-HPC

Training sessions 
and other NERSC 
events 
presentations are 
archived on 
youtube, with 
professional 
captions

NERSC YouTube Channel

https://www.youtube.com/c/NERSCTraining-HPC
https://www.youtube.com/c/NERSCTraining-HPC
https://www.youtube.com/c/NERSCTraining-HPC
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https://docs.nersc.gov/getting-start
ed/#appointments-with-nersc-user-
support-staff

User Slack; User Appointments
https://www.nersc.gov/users/NUG/

https://docs.nersc.gov/getting-started/#appointments-with-nersc-user-support-staff
https://docs.nersc.gov/getting-started/#appointments-with-nersc-user-support-staff
https://docs.nersc.gov/getting-started/#appointments-with-nersc-user-support-staff
https://www.nersc.gov/users/NUG/
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NERSC Docs
Technical Documentations

       https://docs.nersc.gov
● Getting Started

https://docs.nersc.gov/getting-started/

search box

https://docs.nersc.gov
https://docs.nersc.gov/getting-started/
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IRIS 
● IRIS: NERSC Account Management and Reporting: 

https://iris.nersc.gov

○ Account info
○ Change password
○ Change contact info
○ SSH Keys, MFA
○ Check usage info

https://iris.nersc.gov
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Help Portal

 https://help.nersc.gov
● Submit tickets (ask questions)
● All my tickets
● All my projects tickets
● Request forms:

○ Quota Increase
○ Reservations, …

● Book consulting appo
● NERSC user Slack
● Allocation (ERCAP) requests
● Iris

https://help.nersc.gov/
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MyNERSC
 https://my.nersc.gov
● Dashboard
● Jobs
● Center Status
● File Browser
● Service Tickets
● Data Dashboard
● Jupyter Hub
● Links to other useful 

pages

https://help.nersc.gov/
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https://my.nersc.gov Leads You to All Sites

my disk quota

is Perlmutter 
up?

my jobs

help.nersc.gov

jupyter.nersc.gov

www.nersc.gov

docs.nersc.gov

iris.nersc.gov

https://my.nersc.gov
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Perlmutter Documentation
 https://docs.nersc.gov/systems/perlmutter

https://docs.nersc.gov/systems/perlmutter


  

Connecting to NERSC
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Multi-Factor Authentication (MFA) and sshproxy
● NERSC password + OTP ("One-Time Password")

○ OTP obtained via the “Google Authenticator” app on your 
smartphone

○ Alternative/backup option: Authy on desktop https://authy.com/
● MFA is used in login to NERSC systems, web sites, and 

services
○ Setup MFA https://docs.nersc.gov/connect/mfa/

● sshproxy.sh creates a short-term certificate
○ Run sshproxy.sh once, then you can ssh to NERSC systems for 

the next 24 hours before being asked for password+OTP again
○ https://docs.nersc.gov/connect/mfa/#sshproxy

https://docs.nersc.gov/connect/mfa/
https://docs.nersc.gov/connect/mfa/#sshproxy
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SSH and MFA Examples
<laptop>$ ssh elvis@perlmutter.nersc.gov
…
Password + OTP: 
elvis@perlmutter:login32:~>

You will login to one of the login nodes (40 on 
Perlmutter).

To allow X-forwarding to access visualization 
programs,  use the “-Y” flag:
localhost% ssh -Y 
elvis@perlmutter.nersc.gov
         e/elvis> module load matlab
         e/elvis> matlab 
               <MATLAB starts up>
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Connecting to NERSC: NX 
● NERSC recommends using NX instead 

of SSH X-forwarding since NX is faster 
and more reliable

● NX is a service for Accelerated X
● NX also has the benefit of long lasting 

terminal sessions that can survive 
between lost internet connections
○ Can reconnect later, even from a 

different location or computer
● Download and install the Client software: 

NoMachine
○ https://docs.nersc.gov/connect/nx
○ Works on Window/Mac/Linux

don't save the password (it 
changes every login!)

MFA OTP immediately after 
password (no spaces)

https://docs.nersc.gov/connect/nx
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NoMachine

● Could also setup with 
sshproxy so only need to 
authenticate once per day
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Terminal in Jupyter
You can access Perlmutter from any web browser, via 
https://jupyter.nersc.gov 

Terminal

https://jupyter.nersc.gov


  

File Systems and Data 
Management / Transfer
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Simplified NERSC File Systems

Memory

Scratch

Community

HPSS

Performance

Capacity

Global Common

Global Home

35 PB (Perlmutter) Flash Scratch
          Lustre >5 TB/s
          temporarily (purge)
157 PB HDD Community

Spectrum Scale (GPFS)
150 GB/s, permanent

150 PB Tape Archive
HPSS Forever

20 TB SSD Software
Spectrum Scale
Permanent
Faster compiling / Source Code
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Global File Systems 
 Global Home
● Permanent, relatively small 

storage
● Mounted on all platforms
● NOT tuned to perform well for 

parallel jobs
● Quota cannot be changed
● Snapshot backups (7-day history)
● Perfect for storing data such as 

source code, shell scripts

 Community File System (CFS)
● Permanent, larger storage
● Mounted on all platforms
● Medium performance for parallel 

jobs
● Quota can be changed
● Snapshot backups (7-day history)
● Perfect for sharing data within 

research group
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Local File Systems 
 Scratch
● Large, temporary storage
● Optimized for read/write 

operations, NOT storage
● Not backed up
● Purge policy (8 weeks)
● Perfect for staging data and 

performing computations
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HPSS: Long Term Storage System

● High-Performance Storage System
● Archival storage of infrequently accessed data
● Use hsi and htar to put/get files between NERSC 

computational systems and HPSS
● https://docs.nersc.gov/filesystems/archive/ 

https://docs.nersc.gov/filesystems/archive/


  

Software Environment and  
Building Applications
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Software
● Cray supercomputers OS is a version of Linux
● Compilers are provided on machines
● Libraries: many libraries provided by vendor and by NERSC
● Applications: NERSC compiles and supports many software 

packages (such as chemistry and materials sciences 
packages) for our users

● DOE Extreme-scale Scientific Software Stack (E4S):  
open-source projects, including xSDK, dev-tools, 
math-libraries, compilers, and more
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Modules Environment
● LMod is used to manage the user environment

○ https://docs.nersc.gov/environment/#nersc-modules-environment
module 

list To list the modules in your environment

spider <name> To list available modules with <name> as substring, and how to load

load/unload .. To load  or unload module 

swap .. .. To swap modules

show/display .. To see what a module loads, what env a module sets

whatis .. Display  the  module file information

help .. General help:  $module help
Information about a module: $ module help PrgEnv-cray

https://docs.nersc.gov/environment/#nersc-modules-environment
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Default Modules Loaded at Login (GPU Environment)

  1) craype-x86-milan                                         7) craype/2.7.16              13) darshan/3.4.0
  2) libfabric/1.15.0.0                                          8) cray-dsmml/0.2.2        14) Nsight-Compute/2022.1.1
  3) craype-network-ofi                                       9) cray-mpich/8.1.17       15) Nsight-Systems/2022.2.1
  4) perftools-base/22.06.0                               10) cray-libsci/21.08.1.2   16) cudatoolkit/11.7
  5) xpmem/2.4.4-2.3_12.2__gff0e1d9.shasta 11) PrgEnv-gnu/8.3.3        17) craype-accel-nvidia80
  6) gcc/11.2.0                                                  12) xalt/2.10.2                   18) gpu/1.0

Modules Loaded by Default:

● CPU Architecture
● Default Programming 

Environment, Compiler, MPI, 
Scientific Libraries

● GPU Architecture, CUDA-Aware 
MPI, GPU Profilers

● CUDA-aware MPI is enabled by default
● Modules cudatoolkit, craype-accel-nvidia80, 

and gpu are loaded by default. 
● gpu module also sets 

MPICH_GPU_SUPPORT_ENABLED to 1.
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Default Modules for CPU-only Code  

  1) craype-x86-milan                                         7) craype/2.7.16              13) darshan/3.4.0
  2) libfabric/1.15.0.0                                          8) cray-dsmml/0.2.2        14) cpu/1.0
  3) craype-network-ofi                                       9) cray-mpich/8.1.17       
  4) perftools-base/22.06.0                               10) cray-libsci/21.08.1.2   
  5) xpmem/2.4.4-2.3_12.2__gff0e1d9.shasta 11) PrgEnv-gnu/8.3.3        
  6) gcc/11.2.0                                                  12) xalt/2.10.2                   

● CPU Architecture
● Default Programming Environment, Compiler, MPI and 

Scientific Libraries
● Configured for CPU-only MPI

For CPU-only code we recommend: 
module load cpu
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Software Environment
● Available compilers: GNU, Nvidia, CCE, (and Intel, in progress)
● It calls native compilers for each compiler (such as gfortran, gcc, 

g++, etc.) underneath. 
○ Do not use native compilers directly
○ ftn for Fortran codes:  ftn my_code.f90
○ cc for C codes: cc my_code.c
○ CC for C++ codes: CC my_code.cc

● Compiler wrappers add header files and link in MPI and other 
loaded Cray libraries by default
○ Builds applications dynamically by default.  
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Building Sample Program on CPU
● module load cpu
● Using default GNU compiler

ftn -o mytest mytest.f90         (MPI code)
cc -fopenmp -o mytest mytest_hybrid.c     (hybrid MPI/OpenMP code)

● Using Nvidia compiler
module load PrgEnv-nvidia
cc -o mytest mytest_code.c    (MPI code)
cc -mp -o mytest_hybrid mytest_hybrid.c   (MPI/OpenMP hybrid code)
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Perlmutter Supports Every GPU Programming Model

Fortran/
C/C++

CUDA OpenACC 
2.x

OpenMP 
5.x

CUDA 
Fortran

Kokkos /
Raja

MPI HIP DPC++ / 
SYCL

NVIDIA

CCE

GNU

LLVM

Intel

NERSC Supported 
in progress

Vendor 
Supported
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Building CUDA Program on GPU
● module load gpu
● Using default GNU compiler

CC -o mytest mytest.cpp
● using Nvidia compiler

module load PrgEnv-nvidia
CC -cuda -o mytest mytest.cpp
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Building OpenMP Offload Program on GPU
● module load gpu
● using Nvidia compiler

module load PrgEnv-nvidia
ftn -mp=gpu -o mytest mytest.f90
cc -mp=gpu -o mytest mytest.c
CC -mp=gpu -o mytest mytest.cc

● Using CCE compiler
module load PrgEnv-cray
ftn -O3 -h omp -h noacc -o mytest mytest.f90
cc -Ofast -fopenmp -o mytest mytest.c  
CC -Ofast -fopenmp -o mytest mytest.cc
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Building Applications on Perlmutter
● More info on building for Perlmutter GPU

○ https://docs.nersc.gov/systems/perlmutter/#compilingbuilding-software
● More info on porting and optimizing for GPU on Perlmutter 

Readiness page
○ https://docs.nersc.gov/performance/readiness/
○ Basic GPU concepts and programming considerations, programming 

models, running jobs, machine learning applications, libraries, profiling 
tools, IO, case studies, …

https://docs.nersc.gov/systems/perlmutter/#compilingbuilding-software
https://docs.nersc.gov/performance/readiness/


  

Running Jobs



41

Jobs at NERSC
● Most are parallel jobs (10s to 100,000+ cores)
● Also a number of “serial” jobs

○ Typically “pleasantly parallel” simulation or data analysis
● Production runs execute in batch mode
● Our batch scheduler is SLURM
● Typical run times are a few to 10s of hours 

○ Limits are necessary because of MTBF and the need to 
accommodate 9,000 users’ jobs
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Login Nodes and Compute Nodes
● Login nodes (external)

○ Edit files, compile codes, submit batch jobs, etc.
○ Run short, serial utilities and applications

● Compute nodes
○ Execute your application
○ Dedicated resources for your job
○ Perlmutter has CPU and GPU compute nodes
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Launching Parallel Jobs with Slurm

sr
un

sbatch
or

salloc

Login Node

Head Compute 
Node 

Other Compute Nodes 
allocated to the job

Head compute node:
● Runs commands in batch script
● Issues job launcher “srun” to start parallel 

jobs on all compute nodes (including itself)

Login node:
● Submit batch jobs via sbatch or salloc
● Please do not issue “srun” from login nodes
● Do not run big executables on login nodes
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My First “Hello World” Program
my_batch_script:

#!/bin/bash
#SBATCH -q debug
#SBATCH -N 2
#SBATCH -t 10:00
#SBATCH -C cpu
##SBATCH -L SCRATCH
##SBATCH -J myjob
srun -n 64 ./helloWorld

To run via batch queue
% sbatch my_batch_script
To run via interactive batch
% salloc -N 2 -q interactive -C cpu -t 10:00 
<wait_for_session_prompt. Land on a compute node>
% srun -n 64 ./helloWorld
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Perlmutter CPU Compute Node

To obtain processor info:
Get on a compute node:
% salloc -N 1 -C …

Then:
% numactl -H
or % cat /proc/cpuinfo
or % hwloc-ls

● 2 sockets 4 NUMA 
domains/socket (8/node)

● 128 physical cores
● 256 logical cores
● Memory access on 

remote NUMA domains 
are slower
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Sample Perlmutter CPU Batch Script - MPI
#!/bin/bash
#SBATCH -q regular
#SBATCH -N 40
#SBATCH -t 1:00:00
#SBATCH -C cpu
#SBATCH -L SCRATCH
#SBATCH -J myjob

srun -n 1280 -c 8 --cpu_bind=cores ./mycode.exe

● There are 256 logical CPUs (the number Slurm sees) on each node
● “-c” specifies #_logical_CPUs to be allocated to each MPI task
● --cpu-bind is critical especially when nodes are not fully occupied

32 MPI tasks per node
in this example



47

    Sample Perlmutter CPU Batch Script - Hybrid 
MPI/OpenMP

#!/bin/bash
#SBATCH -q regular
#SBATCH -N 40
#SBATCH -t 1:00:00
#SBATCH -C cpu

export OMP_NUM_THREADS=8
export OMP_PROC_BIND=spread
export OMP_PLACES=threads

srun -n 320 -c 32  --cpu-bind=cores ./mycode.exe

● Set OMP_NUM_THREADS
● Use OpenMP standard settings for process and thread affinity
● Again, “-c” specifies #_logical_CPUs to be allocated to each MPI task

○ with 8 MPI tasks per nodel, set 256 logical CPUs / 8 =32 for ”-c”
○ “-c” value should be >= OMP_NUM_THREADS

8 MPI tasks per node    
     in this example
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CPU and GPU Compute Nodes Affinity  
Perlmutter 

CPU
CPU on 

Perlmutter GPU

Physical cores 128 64

Logical CPUs per 
physical core 2 2

Logical CPUs per node 256 128

NUMA domains 8 4

-c value for srun 2* floor(128/tpn) 2*floor(64/tpn)

tpn = Number of MPI tasks per node

CPU on Perlmutter GPU
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Process / Thread / Memory Affinity
● Correct process, thread and memory affinity is critical for getting 

optimal performance on Perlmutter CPU and GPU
○ Process Affinity: bind MPI tasks to CPUs
○ Thread Affinity: bind threads to CPUs allocated to its MPI process
○ Memory Affinity: allocate memory from specific NUMA domains

● Both -c xx and --cpu-bind=cores are essential, otherwise 
multiple processes may land on the same core, while other 
cores are idle, hurting performance badly

● https://docs.nersc.gov/jobs/affinity/

https://docs.nersc.gov/jobs/affinity/
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Use salloc to Run Debug and Interactive Jobs
● You can run small parallel jobs interactively on dedicated nodes
● Debug

○ Max 8 nodes, up to 30 min
% salloc -N 20 -q debug -C cpu -t 30:00

● Interactive  (highly recommend to use this!!)
○ Instant allocation (get nodes in 6 min or reject)
○ Max 4 nodes, walltime 4 hrs

% salloc -N 2 -q interactive -C cpu -t 2:00:00
○ More information 

■ https://docs.nersc.gov/jobs/examples/#interactive
■ https://docs.nersc.gov/jobs/interactive/

https://docs.nersc.gov/jobs/examples/#interactive
https://www.nersc.gov/users/live-status/
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Use “shared” QOS to Run Serial Jobs
● The “shared” QOS allows multiple executables from different users to share a 

node
● Each serial job run on a single physical core of a “shared” node
● Up to 128 (Perlmutter CPU) jobs from different users depending on their memory 

requirements

#SBATCH -q shared
#SBATCH -t 1:00:00
#SBATCH --mem=4GB
#SBATCH -C cpu
#SBATCH -J my_job
./mycode.x

● Charged by a fraction of a node used
● https://docs.nersc.gov/jobs/examples/#shared
● Also available on Perlmutter GPU

https://docs.nersc.gov/jobs/examples/#shared
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Bundle Jobs
Multiple Jobs Sequentially:
#!/bin/bash
#SBATCH --qos=debug
#SBATCH --nodes=4
#SBATCH --time=10:00
#SBATCH --licenses=cfs,scratch
#SBATCH --constraint=cpu

# each srun uses 4 nodes
srun -n 128 -c 8 --cpu_bind=cores ./a.out   
srun -n 64 -c 16 --cpu_bind=cores ./b.out 
srun -n 32 -c 32 --cpu_bind=cores ./c.out

Multiple Jobs Simultaneously:
#!/bin/bash
#SBATCH --qos=debug
#SBATCH --nodes=8
#SBATCH --time=30:00
#SBATCH --licenses=scratch
#SBATCH --constraint=cpu

# 3 sruns combined use 8 nodes
srun -N 2 -n 176 -c 2 --cpu_bind=cores ./a.out &
srun -N 4 -n 432 -c 2 --cpu_bind=cores ./b.out &
srun -N 2 -n 160 -c 2 --cpu_bind=cores ./c.out &
wait

● Request total number of nodes needed
● No applications are shared on the same nodes
● Make sure to use “&” (otherwise run in sequential) and 

“wait” (otherwise job exit immediately)
● https://docs.nersc.gov/jobs/examples/#multiple-parallel-jo

bs-simultaneously

● Request largest number of nodes 
needed

● https://docs.nersc.gov/jobs/examples/#
multiple-parallel-jobs-sequentially

https://docs.nersc.gov/jobs/examples/#multiple-parallel-jobs-simultaneously
https://docs.nersc.gov/jobs/examples/#multiple-parallel-jobs-simultaneously
https://docs.nersc.gov/jobs/examples/#multiple-parallel-jobs-sequentially
https://docs.nersc.gov/jobs/examples/#multiple-parallel-jobs-sequentially
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Dependency Jobs
perlmutter% sbatch job1 
Submitted batch job 1655447 

perlmutter% sbatch --dependency=afterok:165547 job2 
or 
perlmutter% sbatch --dependency=afterany:165547 job2

perlmutter% sbatch job1 
submitted batch job 1655447

perlmutter% cat job2 
#!/bin/bash 
#SBATCH -q regular 
#SBATCH -N 1 
#SBATCH -t 1:30:00 
#SBATCH -d afterok:1655447 
#SBATCH -C cpu
srun -n 64 -c 4 –cpu-bind=cores ./a.out 

perlmutter% sbatch job2

https://docs.nersc.gov/jobs/example
s/#dependencies

https://docs.nersc.gov/jobs/examples/#dependencies
https://docs.nersc.gov/jobs/examples/#dependencies
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Job Arrays
#!/bin/bash 
#SBATCH -q regular 
#SBATCH -N 1
#SBATCH -t 1:00:00 
#SBATCH --array=1-10 
#SBATCH -L SCRATCH 
#SBATCH -C cpu

cd test_$SLURM_ARRAY_JOB_ID  
srun ./mycode.exe

● Better managing jobs, not necessary 
faster turnaround

● Each array task is considered a single 
job for scheduling

● Use $SLURM_ARRAY_JOB_ID for 
each individual array task

https://docs.nersc.gov/jobs/examples/#job-arrays

https://docs.nersc.gov/jobs/examples/#job-arrays
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Use Workflow Management Tools
● These tools can help data-centric science to automate moving data, 

multi-step processing, and visualization at scales. 
● Please do not do below!  

for i = 1, 10000

     srun -n 1 ./a.out

It is inefficient and overwhelms Slurm scheduler
● Available workflow tools include: GNU parallel, Taskfarmer, 

Fireworks, Nextflow, Papermill, etc. 
● One usage case is to pack large number of serial jobs into one script
● https://docs.nersc.gov/jobs/workflow-tools/

https://docs.nersc.gov/jobs/workflow-tools/
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GNU Parallel Is Better Than Shared QOS
perlmutter% module load parallel

perlmutter% seq 1 5 | parallel -j 2 'echo                                 
"Hello world {}!"; sleep 10; date'
Hello world 1!
Wed 07 Jun 2023 10:22:11 PM PDT
Hello world 2!
Wed 07 Jun 2023 10:22:11 PM PDT
Hello world 3!
Wed 07 Jun 2023 10:22:21 PM PDT
Hello world 4!
Wed 07 Jun 2023 10:22:21 PM PDT
Hello world 5!
Wed 07 Jun 2023 10:22:31 PM PDT

● Packed jobs have massively 
reduced total queue wait
○ Can also pack single-node 

tasks into multiple node jobs
● No risk of Slurm overload
● Run combinations of tasks in 

parallel and sequence
● Easy input substitution

○ If you need it, much more 
power is available

● Superior to task arrays, too
● https://docs.nersc.gov/jobs/workflow/

gnuparallel/

https://docs.nersc.gov/jobs/workflow/gnuparallel/
https://docs.nersc.gov/jobs/workflow/gnuparallel/
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Sample GPU Job Script 
#!/bin/bash
#SBATCH --account=mxxx
#SBATCH --qos=regular
#SBATCH --nodes=2
#SBATCH --time=60
#SBATCH --constraint=gpu
#SBATCH --job-name=myjob
#SBATCH --ntasks-per-node=64
#SBATCH --cpus-per-task=2
#SBATCH --gpus-per-node=4

export OMP_NUM_THREADS=1
srun -n 128 --cpu-bind=cores --gpu-bind=closest <executable>

● By default all processes will have access to all GPUs. 
● A round robin assignment does not guarantee affinity.
● To guarantee that closest GPU is assigned:  -gpus-bind=closest
● To bind ranks to individual cores: -cpu-bind=cores

c = 2*floor(64/tpn)

Where: 
tpn = ntasks-per-node
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1 Node, 4 Tasks, 4 GPUs 
1 GPU visible to each task¶

#!/bin/bash
#SBATCH -A ntrain3
#SBATCH -C gpu
#SBATCH -q regular
#SBATCH -t 1:00:00
#SBATCH -N 1
#SBATCH --ntasks-per-node=4
#SBATCH -c 32
#SBATCH --gpus-per-task=1
export SLURM_CPU_BIND="cores"
srun ./gpus_for_tasks

# Default for –gpus-per-task=1 is 1 task only 
see 1 GPU 

 4 GPUs visible to each task¶

#!/bin/bash
#SBATCH -A ntrain3
#SBATCH -C gpu
#SBATCH -q debug
#SBATCH -t 10:00
#SBATCH -N 1
#SBATCH --ntasks-per-node=4
#SBATCH -c 32
#SBATCH --gpus-per-task=1
#SBATCH --gpu-bind=none
export SLURM_CPU_BIND="cores"
srun ./gpus_for_tasks

# Default for –gpus-per-task=1 and 
–gpu-bind-none  is each task sees all GPU 

https://docs.nersc.gov/systems/perlmutter/running-jobs/#1-node-4-tasks-4-gpus-1-gpu-visible-to-each-task
https://docs.nersc.gov/systems/perlmutter/running-jobs/#4-nodes-16-tasks-16-gpus-1-gpu-visible-to-each-task
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Perlmutter CPU Queue Policy (as of June 2023)
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Perlmutter GPU Queue Policy (as of June 2023)
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NERSC Job Script Generator
https://my.nersc.gov/script_generator.php
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Monitoring Your Jobs
● Jobs are waiting in the queue until resources are available
● Overall job priorities are a combination of QOS, queue wait time, job size, 

wall time request, etc. 
● You can monitor with

○ squeue: Slurm native command 
○ sqs: NERSC custom wrapper script
○ sacct: Query Completed and Pending Jobs
○ https://docs.nersc.gov/jobs/monitoring/

● On the web
○ https://www.nersc.gov/users/live-status/ 🡺 Queue Look
○ https://iris.nersc.gov  the “Jobs” tab

https://docs.nersc.gov/jobs/monitoring/
https://www.nersc.gov/users/live-status/
https://iris.nersc.gov


  

Data Analytics Software and Services
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Production Data Software Stack
Capabilities Technologies

Data Transfer + Access

Workflows

Data Management

Data Analytics

Data Visualization

TaskFarmer
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Data Analytic Software Services
● Globus Online
● Science Gateways
● Databases
● Shifter  / Podman
● Python
● Jupyter
● Machine Learning / Deep Learning
● Workflows 
● And more …
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Globus Online: Move Data
● https://www.globus.org    https://docs.nersc.gov/services/globus/
● The recommended tool for moving data in&out of NERSC

○ Reliable & easy-to-use web-based service: 
■ Automatic retries 
■ Email notification of success or failure

○ NERSC managed endpoints for optimized data transfers
■ NERSC DTN (dedicated data transfer system), NERSC Perlmutter, 

NERSC HPSS, etc.
○ Other Center has endpoints, such as OLCF DTN
○ Setup Globus Connect Personal to ease transfer between 

local system (such as laptop) and NERSC systems

https://www.globus.org
https://docs.nersc.gov/services/globus/
https://app.globus.org/file-manager/gcp


67

Globus File Transfer Example
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Data Transfer General Tips
● Use Globus Online for large, automated or monitored 

transfers
● cp, scp, or rsync is fine for smaller, one-time transfers 

(<100 MB)
○ But note that Globus is also fine for small transfers

● Use give-and-take to share files between NERSC users
○ % give -u <receiving_user> <file or directory>
○ % take -u <sending_user> <filename>   
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Access for External Collaborators  
● Web Portals

○ NERSC supports project-level public http access
■ Project specific area can be created:

/global/cfs/cdirs/<your_project>/www
■ These are available for public access under the URL:

http://portal.nersc.gov/cfs/<your_project> 

○ Each repo has a /project space, can publish as above
● Special Science Gateways can be created.  

○ Sophisticated ones can be made with SPIN 
https://docs.nersc.gov/services/spin/ 
https://www.nersc.gov/users/training/spin/ (SPIN workshop required)

○ Details at: https://docs.nersc.gov/services/science-gateways/

https://docs.nersc.gov/services/spin/getting_started/
https://www.nersc.gov/users/training/spin/
https://docs.nersc.gov/services/science-gateways/
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Shifter 

● NERSC R&D effort, in collaboration with Cray, to support 
Docker Application images

● “Docker-like” functionality on the Cray and HPC Linux clusters. 
Enables users to run custom environments on HPC systems.

● Addresses security issues in a robust way
● Efficient job-start & Native application performance

https://docs.nersc.gov/development/shifter/how-to-use/

https://docs.nersc.gov/development/shifter/how-to-use/
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Shifter Accelerates Python Applications

● Shifter is especially 
helpful for python 
applications

● A large number of 
shared libraries 
needed on compute 
nodes before 
execution
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Create an Image with Docker
FROM ubuntu:14.04
MAINTAINER Shane Canon scanon@lbl.gov
# Update packages and install dependencies
RUN apt-update –y && \
   apt-get install -y build-essential

# Copy in the application
ADD . /myapp
# Build it
RUN cd /myapp && \
    make && make install

Dockerfile

laptop> docker build -t scanon/myapp:1.1 .
laptop> docker push scanon/myapp:1.1
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Use the Image with Shifter
#!/bin/bash

#SBATCH -N 16 -t 20 

#SBATCH --image=scanon/myapp:1.1

module load shifter

export TMPDIR=/mnt

srun -n 16 shifter /myapp/app

cori> shifterimg pull scanon/myapp:1.1
cori> sbatch ./job.sl

Submit script
job.sl
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Try this: Podman

• Podman (Pod manager) is an Open Container Initiative compliant 
container framework under active development by Red Hat

• Free and open source
• Usable anywhere (including your laptop), not just NERSC
• Can provide rootless containers, which give users the ability to run as 

root within their image while still maintaining security
• Will allow users to build images on Perlmutter login nodes
• Performance in most cases should be similar to what is currently 

possible with Shifter (i.e. it’s fast!)
• https://docs.nersc.gov/development/podman-hpc/overview/
•

https://docs.nersc.gov/development/podman-hpc/overview/
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Python
● Extremely popular interpreted language, continuing to grow 
● Libraries like NumPy, SciPy, scikit-learn commonly used for scientific 

analysis
● Are used for ML/DL
● Python is fully supported at NERSC - we use Anaconda Python to provide 

pre-built environments and the ability for users to create their own 
environments
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Python
● Avoid running “conda init” which will hardcode conda initialization in 

your shell startup file ($HOME/.bashrc)
● Do not use /usr/bin/python, instead:

       module load python
       which already includes basic packages: numpy, scipy, mpi4py

● Guide to use Python on Perlmutter:
○ https://docs.nersc.gov/development/languages/python/using-python-perlmutter

https://docs.nersc.gov/development/languages/python/using-python-perlmutter/
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Create a custom conda environment:
perlmutter> module load python

perlmutter> conda create --name myenv --yes python=3.10

perlmutter> conda activate myenv

(myenv) perlmutter> python

Python 3.10.4 (main, Mar 31 2022, 08:41:55) [GCC 7.5.0] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>>

Use Python inside a Shifter container:
perlmutter> shifter --image=docker:library/python:latest python

Python 3.10.7 (main, Sep 13 2022, 14:31:33) [GCC 10.2.1 20210110] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>>

Other options for using Python at NERSC

https://docs.nersc.gov/development/languages/python/nersc-python/

https://docs.nersc.gov/development/languages/python/nersc-python/
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Building and using mpi4py
•mpi4py provides a Python interface to MPI
•mpi4py is available via module load python
•This mpi4py is CUDA-aware (can communicate GPU objects)
•To build your own CUDA-aware mpi4py, follow this recipe:
perlmutter> module load PrgEnv-gnu cudatoolkit python
perlmutter> conda create -n cudaaware python=3.9 -y
perlmutter> conda activate cudaaware
perlmutter> MPICC="cc -target-accel=nvidia80 -shared" pip install 
--force-reinstall --no-cache-dir --no-binary=mpi4py mpi4py

•Be aware that with any CUDA-aware mpi4py, you must have 
cudatoolkit loaded, even for code that does not use the GPU
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Getting started with GPUs in Python
• NumPy and SciPy do not utilize GPUs out of the box

• There are many Python GPU frameworks out there:
o “drop in” replacements for numpy, scipy, pandas, scikit-learn, etc

o CuPy, RAPIDS
o “machine learning” libraries that also support general GPU 

computing
o PyTorch, TensorFlow, JAX

o “I want to write my own GPU kernels”
o Numba, PyOpenCL, PyCUDA, CUDA Python

o multi-node / distributed memory:
o mpi4py+X, dask, cuNumeric
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Getting started with GPUs in Python (CuPy)

> module load python 

> conda create -y --name cupy-demo python=3.9 numpy scipy

> conda activate cupy-demo

> pip install cupy-cuda11X 

> python

>>> import cupy as cp

>>> print(cp.array([1, 2, 3]))

[1 2 3]

See documentation at https://docs.nersc.gov/development/languages/python/using-python-perlmutter/
or open a ticket at https://help.nersc.gov/

Check your package documentation to see 
cudatoolkit compatibility requirements

Note: cudatoolkit module is loaded by default
Current default version is cudatoolkit/11.7

https://docs.nersc.gov/development/languages/python/using-python-perlmutter/
https://help.nersc.gov/
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What is Jupyter?
Interactive open-source web application

Allows you to create and share documents, “notebooks,” containing:
Live code
Equations
Visualizations
Narrative text
Interactive widgets

Things you can use Jupyter notebooks for:
Data cleaning and data transformation
Numerical simulation
Statistical modeling
Data visualization
Machine learning
Workflows and analytics frameworks
Training and Tutorials

https://docs.nersc.gov/services/jupyter/

https://docs.nersc.gov/services/jupyter/
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Available Notebook Servers 
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Available Jupyter Kernels

Your own custom 
kernels

And many NERSC 
provided kernels: 
Python, Julia, ML/DL 
packages etc.
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Your Own Custom Jupyter Kernel
Most common Jupyter question:

“How do I take a conda environment and use it from Jupyter?”

Several ways to accomplish this, here’s the easy one.

$ module load python
$ conda create -n myenv python=3.9 ipykernel <more-packages-to-install>
$ conda activate myenv
(myenv) $ python -m ipykernel install --user --name myenv-jupyter

Point your browser to jupyter.nersc.gov.
(You may need to restart your notebook server via control panel).
Kernel “myenv-jupyter” should be present in the kernel list.
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Additional Customization

{
 "argv": [
  "/global/homes/y/yunhe/jupyter-helper.sh",
  “python”,
  “-m”,
  “ipykernel_launcher”,
  "-f",
  "{connection_file}"
 ],
 "display_name": "myenv-jupyter2",
 "language": "python",
}

The helper script is the most 
flexible approach for NERSC users 
since it easily enables modules.

Meanwhile, in jupyter-helper.sh:
#!/bin/bash
export SOMETHING=123
module load texlive
exec python -m ipykernel "$@”

edit: 
$HOME/.local/share/jupyter/kernels/myenv-jupyter/kernel.json
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NERSC Deep Learning Software Stack Overview 
https://docs.nersc.gov/machinelearning/
Frameworks:

Distributed training libraries:
● Horovod
● PyTorch distributed
● Cray Plugin

Productive tools and services:
● Jupyter, Shifter

https://docs.nersc.gov/machinelearning/
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How to Use NERSC DL Software Stack  
● We have modules you can load which contain python and DL 

libraries
○ module load tensorflow/<version>
○ module load pytorch/<version>

● You can install your own packages on top to customize
○ pip install --force-reinstall --no-cache-dir --user MY-PACKAGE 

● Or you can create your conda environments from scratch
○ conda create -n my-env MY-PACKAGES

● We also have pre-installed Jupyter kernels 
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Containerized DL: using Shifter on Perlmutter
To see images currently available: 

shifterimg images | grep pytorch
To pull desired docker images onto Perlmutter:

shifterimg pull <dockerhub_image_tag>
To use interactively:

shifter --module gpu --image=nvcr.io/nvidia/pytorch:22.05-py3

Use Slurm image shifter options for best performance in batch jobs:

#SBATCH --image=nersc/pytorch:ngc-22.05_v1
srun shifter python my_python_script.py
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Jupyter for Deep Learning 
JupyterHub service provides a rich,
interactive notebook ecosystem
● Very popular service with hundreds of users
● A favorite way for users to develop ML code

Users can run their deep learning workloads
● Using our pre-installed DL software kernels 

on dedicated Perlmutter GPU nodes
● Using user custom kernels
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https://docs.nersc.gov/services/jupyter/#conda-environments-as-kernels


  

Hands-on Exercises
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Compiling and Running Jobs on Perlmutter  
● % ssh <user>@perlmutter.nersc.gov  (or ssh <user>@saul.nersc.gov)
● % cd $SCRATCH
● % git clone https://github.com/NERSC/intro-NERSC-resources.git
● % cd intro-NERSC-resources

CPU Examples:
- 01-hello: build and run basic MPI program on CPU
- 02-matrix: build and run a hybrid MPI/OpenMP matrix multiply code on CPU
- 03-xthi: a hybrid MPI/OpenMP code, mainly on CPU affinity settings
GPU Examples:
- 04-pi_targ: build and run an OpenMP target offload program on GPU
- 05-gpus_for_tasks: build and run a CUDA code on GPU, and gpu affinity settings

https://github.com/NERSC/intro-NERSC-resources.git
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Using Compute Node Reservations

● Existing NERSC users are added to “ntrain3” project
● Perlmutter node reservations available from 2-3:30 pm 

today
● User reservations with --reservation=xxx -A ntrain3, where

○ xxx is “intro_cpu” or “intro_gpu”
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Thank You 


