
1

Introduction to
NERSC Resources

LBNL CS Summer Program
June 8, 2023

Helen He
NERSC User Engagement Group

2

Some Logistics
● Users are muted upon joining Zoom (can unmute to speak)
● Please change your name in Zoom session

○ to: first_name last_name
○ Click “Participants”, then “More” next to your name to rename

● Click the CC button to toggle captions and View Full Transcript
● GDoc is used for Q&A (instead of Zoom chat)

○ https://tinyurl.com/mtva7dar
● Slides and videos will be available on the Training Event page and CSA

Summer Program page
○ https://www.nersc.gov/users/training/events/introduction-to-nersc-resources-jun2023/
○ https://cs.lbl.gov/careers/summer-student-and-faculty-program/2023-csa-summer-progra

m/summer-program/
● Apply for a training account if no NERSC account or MFA not setup yet

○ https://iris.nersc.gov/train, and use the 4-letter code "aO7N"

https://tinyurl.com/mtva7dar
https://www.nersc.gov/users/training/events/introduction-to-nersc-resources-jun2023/
https://cs.lbl.gov/careers/summer-student-and-faculty-program/2023-csa-summer-program/summer-program/
https://cs.lbl.gov/careers/summer-student-and-faculty-program/2023-csa-summer-program/summer-program/
https://iris.nersc.gov/train

3

Outline
● NERSC and Systems Overview
● NERSC Online Resources
● Connecting to NERSC
● File Systems and Data Management / Transfer
● Software Environment / Building Applications
● Running Jobs
● Data Analytics Software and Services
● Hands-on: Compiling and Running Jobs on Perlmutter

NERSC and Systems Overview

5

NERSC is the Mission HPC Computing Center for
the DOE Office of Science
● NERSC deploys advanced HPC and data systems for the

broad Office of Science community
● NERSC staff provide advanced application and system

performance expertise to users
● Approximately 9,000 users and 900 projects
● Over 2,000 publications cite using NERSC resources per

year
● Founded in 1974, focused on open science
● Division of Lawrence Berkeley National Laboratory

6

NERSC Systems Roadmap

2013

NERSC-7:
Edison
Multicore
CPU

NERSC-8: Cori
Manycore CPU
NESAP Launched:
transition applications
to advanced
architectures

2016

2024

 NERSC-9: Perlmutter
CPU and GPU nodes
Continued transition of
applications and support for
complex workflows

2021

NERSC-10:
Exa system

2028

Increasingly energy-efficient architectures

NERSC-11:
Beyond
Moore

7 7

Cori (retired 5/31/2023)
9,600 Intel Xeon Phi “KNL” manycore nodes
2,000 Intel Xeon “Haswell” nodes
700,000 processor cores, 1.2 PB memory
Cray XC40 / Aries Dragonfly interconnect
30 PF Peak

28 PB
Scratch

700
GB/s

2 PB
Burst Buffer

1.5
TB/s

120 PB
Common

File
System

275 TB
/home

100 GB/s

5 GB/s

DTNs, Spin, Gateways

2 x 100 Gb/s
SDN

50 GB/s

Ethernet & IB Fabric
Science Friendly Security
Production Monitoring

Power Efficiency

LAN

NERSC Systems

HPSS Tape
 Archive
~200 PB

 Perlmutter
1,536 NVIDIA A100 accelerated nodes
4 A100 GPUs & 1 AMD ‘Milan’ CPU per node
384 TB (CPU) + 240 TB (GPU) memory
HPE Cray Slingshot high speed interconnect
World’s 7th most powerful supercomputer
140 PF Peak
Pre-production system

35 PB
Scratch

5
TB/s

NERSC Online Resources

9

Classic NERSC Page
● https://www.nersc.gov
● Science, News, Publications
● Contact Us
● Live Status (MOTD)

https://www.nersc.gov/live-status/
motd/

● NUG (and Slack)
● Training Events

https://www.nersc.gov/users/train
ing/events/

○ New Users, Using Systems,
GPUs, Programming Models,
Performance Tools,
Applications, Data Analytics,
ML/DL, Workflows, and
Services, …

https://www.nersc.gov
https://www.nersc.gov/live-status/motd/
https://www.nersc.gov/live-status/motd/
http://www.nersc.gov/users/training/events/
http://www.nersc.gov/users/training/events/

10

https://www.youtu
be.com/c/NERSC
Training-HPC

Training sessions
and other NERSC
events
presentations are
archived on
youtube, with
professional
captions

NERSC YouTube Channel

https://www.youtube.com/c/NERSCTraining-HPC
https://www.youtube.com/c/NERSCTraining-HPC
https://www.youtube.com/c/NERSCTraining-HPC

11

https://docs.nersc.gov/getting-start
ed/#appointments-with-nersc-user-
support-staff

User Slack; User Appointments
https://www.nersc.gov/users/NUG/

https://docs.nersc.gov/getting-started/#appointments-with-nersc-user-support-staff
https://docs.nersc.gov/getting-started/#appointments-with-nersc-user-support-staff
https://docs.nersc.gov/getting-started/#appointments-with-nersc-user-support-staff
https://www.nersc.gov/users/NUG/

12

NERSC Docs
Technical Documentations

 https://docs.nersc.gov
● Getting Started

https://docs.nersc.gov/getting-started/

search box

https://docs.nersc.gov
https://docs.nersc.gov/getting-started/

13

IRIS
● IRIS: NERSC Account Management and Reporting:

https://iris.nersc.gov

○ Account info
○ Change password
○ Change contact info
○ SSH Keys, MFA
○ Check usage info

https://iris.nersc.gov

14

Help Portal

 https://help.nersc.gov
● Submit tickets (ask questions)
● All my tickets
● All my projects tickets
● Request forms:

○ Quota Increase
○ Reservations, …

● Book consulting appo
● NERSC user Slack
● Allocation (ERCAP) requests
● Iris

https://help.nersc.gov/

15

MyNERSC
 https://my.nersc.gov
● Dashboard
● Jobs
● Center Status
● File Browser
● Service Tickets
● Data Dashboard
● Jupyter Hub
● Links to other useful

pages

https://help.nersc.gov/

16

https://my.nersc.gov Leads You to All Sites

my disk quota

is Perlmutter
up?

my jobs

help.nersc.gov

jupyter.nersc.gov

www.nersc.gov

docs.nersc.gov

iris.nersc.gov

https://my.nersc.gov

17

Perlmutter Documentation
 https://docs.nersc.gov/systems/perlmutter

https://docs.nersc.gov/systems/perlmutter

Connecting to NERSC

19

Multi-Factor Authentication (MFA) and sshproxy
● NERSC password + OTP ("One-Time Password")

○ OTP obtained via the “Google Authenticator” app on your
smartphone

○ Alternative/backup option: Authy on desktop https://authy.com/
● MFA is used in login to NERSC systems, web sites, and

services
○ Setup MFA https://docs.nersc.gov/connect/mfa/

● sshproxy.sh creates a short-term certificate
○ Run sshproxy.sh once, then you can ssh to NERSC systems for

the next 24 hours before being asked for password+OTP again
○ https://docs.nersc.gov/connect/mfa/#sshproxy

https://docs.nersc.gov/connect/mfa/
https://docs.nersc.gov/connect/mfa/#sshproxy

20

SSH and MFA Examples
<laptop>$ ssh elvis@perlmutter.nersc.gov
…
Password + OTP:
elvis@perlmutter:login32:~>

You will login to one of the login nodes (40 on
Perlmutter).

To allow X-forwarding to access visualization
programs, use the “-Y” flag:
localhost% ssh -Y
elvis@perlmutter.nersc.gov
 e/elvis> module load matlab
 e/elvis> matlab
 <MATLAB starts up>

21

Connecting to NERSC: NX
● NERSC recommends using NX instead

of SSH X-forwarding since NX is faster
and more reliable

● NX is a service for Accelerated X
● NX also has the benefit of long lasting

terminal sessions that can survive
between lost internet connections
○ Can reconnect later, even from a

different location or computer
● Download and install the Client software:

NoMachine
○ https://docs.nersc.gov/connect/nx
○ Works on Window/Mac/Linux

don't save the password (it
changes every login!)

MFA OTP immediately after
password (no spaces)

https://docs.nersc.gov/connect/nx

22

NoMachine

● Could also setup with
sshproxy so only need to
authenticate once per day

23

Terminal in Jupyter
You can access Perlmutter from any web browser, via
https://jupyter.nersc.gov

Terminal

https://jupyter.nersc.gov

File Systems and Data
Management / Transfer

25

Simplified NERSC File Systems

Memory

Scratch

Community

HPSS

Performance

Capacity

Global Common

Global Home

35 PB (Perlmutter) Flash Scratch
 Lustre >5 TB/s
 temporarily (purge)
157 PB HDD Community

Spectrum Scale (GPFS)
150 GB/s, permanent

150 PB Tape Archive
HPSS Forever

20 TB SSD Software
Spectrum Scale
Permanent
Faster compiling / Source Code

26

Global File Systems
 Global Home
● Permanent, relatively small

storage
● Mounted on all platforms
● NOT tuned to perform well for

parallel jobs
● Quota cannot be changed
● Snapshot backups (7-day history)
● Perfect for storing data such as

source code, shell scripts

 Community File System (CFS)
● Permanent, larger storage
● Mounted on all platforms
● Medium performance for parallel

jobs
● Quota can be changed
● Snapshot backups (7-day history)
● Perfect for sharing data within

research group

27

Local File Systems
 Scratch
● Large, temporary storage
● Optimized for read/write

operations, NOT storage
● Not backed up
● Purge policy (8 weeks)
● Perfect for staging data and

performing computations

28

HPSS: Long Term Storage System

● High-Performance Storage System
● Archival storage of infrequently accessed data
● Use hsi and htar to put/get files between NERSC

computational systems and HPSS
● https://docs.nersc.gov/filesystems/archive/

https://docs.nersc.gov/filesystems/archive/

Software Environment and
Building Applications

30

Software
● Cray supercomputers OS is a version of Linux
● Compilers are provided on machines
● Libraries: many libraries provided by vendor and by NERSC
● Applications: NERSC compiles and supports many software

packages (such as chemistry and materials sciences
packages) for our users

● DOE Extreme-scale Scientific Software Stack (E4S):
open-source projects, including xSDK, dev-tools,
math-libraries, compilers, and more

31

Modules Environment
● LMod is used to manage the user environment

○ https://docs.nersc.gov/environment/#nersc-modules-environment
module

list To list the modules in your environment

spider <name> To list available modules with <name> as substring, and how to load

load/unload .. To load or unload module

swap To swap modules

show/display .. To see what a module loads, what env a module sets

whatis .. Display the module file information

help .. General help: $module help
Information about a module: $ module help PrgEnv-cray

https://docs.nersc.gov/environment/#nersc-modules-environment

32

Default Modules Loaded at Login (GPU Environment)

 1) craype-x86-milan 7) craype/2.7.16 13) darshan/3.4.0
 2) libfabric/1.15.0.0 8) cray-dsmml/0.2.2 14) Nsight-Compute/2022.1.1
 3) craype-network-ofi 9) cray-mpich/8.1.17 15) Nsight-Systems/2022.2.1
 4) perftools-base/22.06.0 10) cray-libsci/21.08.1.2 16) cudatoolkit/11.7
 5) xpmem/2.4.4-2.3_12.2__gff0e1d9.shasta 11) PrgEnv-gnu/8.3.3 17) craype-accel-nvidia80
 6) gcc/11.2.0 12) xalt/2.10.2 18) gpu/1.0

Modules Loaded by Default:

● CPU Architecture
● Default Programming

Environment, Compiler, MPI,
Scientific Libraries

● GPU Architecture, CUDA-Aware
MPI, GPU Profilers

● CUDA-aware MPI is enabled by default
● Modules cudatoolkit, craype-accel-nvidia80,

and gpu are loaded by default.
● gpu module also sets

MPICH_GPU_SUPPORT_ENABLED to 1.

33

Default Modules for CPU-only Code

 1) craype-x86-milan 7) craype/2.7.16 13) darshan/3.4.0
 2) libfabric/1.15.0.0 8) cray-dsmml/0.2.2 14) cpu/1.0
 3) craype-network-ofi 9) cray-mpich/8.1.17
 4) perftools-base/22.06.0 10) cray-libsci/21.08.1.2
 5) xpmem/2.4.4-2.3_12.2__gff0e1d9.shasta 11) PrgEnv-gnu/8.3.3
 6) gcc/11.2.0 12) xalt/2.10.2

● CPU Architecture
● Default Programming Environment, Compiler, MPI and

Scientific Libraries
● Configured for CPU-only MPI

For CPU-only code we recommend:
module load cpu

34

Software Environment
● Available compilers: GNU, Nvidia, CCE, (and Intel, in progress)
● It calls native compilers for each compiler (such as gfortran, gcc,

g++, etc.) underneath.
○ Do not use native compilers directly
○ ftn for Fortran codes: ftn my_code.f90
○ cc for C codes: cc my_code.c
○ CC for C++ codes: CC my_code.cc

● Compiler wrappers add header files and link in MPI and other
loaded Cray libraries by default
○ Builds applications dynamically by default.

35

Building Sample Program on CPU
● module load cpu
● Using default GNU compiler

ftn -o mytest mytest.f90 (MPI code)
cc -fopenmp -o mytest mytest_hybrid.c (hybrid MPI/OpenMP code)

● Using Nvidia compiler
module load PrgEnv-nvidia
cc -o mytest mytest_code.c (MPI code)
cc -mp -o mytest_hybrid mytest_hybrid.c (MPI/OpenMP hybrid code)

36

Perlmutter Supports Every GPU Programming Model

Fortran/
C/C++

CUDA OpenACC
2.x

OpenMP
5.x

CUDA
Fortran

Kokkos /
Raja

MPI HIP DPC++ /
SYCL

NVIDIA

CCE

GNU

LLVM

Intel

NERSC Supported
in progress

Vendor
Supported

37

Building CUDA Program on GPU
● module load gpu
● Using default GNU compiler

CC -o mytest mytest.cpp
● using Nvidia compiler

module load PrgEnv-nvidia
CC -cuda -o mytest mytest.cpp

38

Building OpenMP Offload Program on GPU
● module load gpu
● using Nvidia compiler

module load PrgEnv-nvidia
ftn -mp=gpu -o mytest mytest.f90
cc -mp=gpu -o mytest mytest.c
CC -mp=gpu -o mytest mytest.cc

● Using CCE compiler
module load PrgEnv-cray
ftn -O3 -h omp -h noacc -o mytest mytest.f90
cc -Ofast -fopenmp -o mytest mytest.c
CC -Ofast -fopenmp -o mytest mytest.cc

39

Building Applications on Perlmutter
● More info on building for Perlmutter GPU

○ https://docs.nersc.gov/systems/perlmutter/#compilingbuilding-software
● More info on porting and optimizing for GPU on Perlmutter

Readiness page
○ https://docs.nersc.gov/performance/readiness/
○ Basic GPU concepts and programming considerations, programming

models, running jobs, machine learning applications, libraries, profiling
tools, IO, case studies, …

https://docs.nersc.gov/systems/perlmutter/#compilingbuilding-software
https://docs.nersc.gov/performance/readiness/

Running Jobs

41

Jobs at NERSC
● Most are parallel jobs (10s to 100,000+ cores)
● Also a number of “serial” jobs

○ Typically “pleasantly parallel” simulation or data analysis
● Production runs execute in batch mode
● Our batch scheduler is SLURM
● Typical run times are a few to 10s of hours

○ Limits are necessary because of MTBF and the need to
accommodate 9,000 users’ jobs

42

Login Nodes and Compute Nodes
● Login nodes (external)

○ Edit files, compile codes, submit batch jobs, etc.
○ Run short, serial utilities and applications

● Compute nodes
○ Execute your application
○ Dedicated resources for your job
○ Perlmutter has CPU and GPU compute nodes

43

Launching Parallel Jobs with Slurm

sr
un

sbatch
or

salloc

Login Node

Head Compute
Node

Other Compute Nodes
allocated to the job

Head compute node:
● Runs commands in batch script
● Issues job launcher “srun” to start parallel

jobs on all compute nodes (including itself)

Login node:
● Submit batch jobs via sbatch or salloc
● Please do not issue “srun” from login nodes
● Do not run big executables on login nodes

44

My First “Hello World” Program
my_batch_script:

#!/bin/bash
#SBATCH -q debug
#SBATCH -N 2
#SBATCH -t 10:00
#SBATCH -C cpu
##SBATCH -L SCRATCH
##SBATCH -J myjob
srun -n 64 ./helloWorld

To run via batch queue
% sbatch my_batch_script
To run via interactive batch
% salloc -N 2 -q interactive -C cpu -t 10:00
<wait_for_session_prompt. Land on a compute node>
% srun -n 64 ./helloWorld

45

Perlmutter CPU Compute Node

To obtain processor info:
Get on a compute node:
% salloc -N 1 -C …

Then:
% numactl -H
or % cat /proc/cpuinfo
or % hwloc-ls

● 2 sockets 4 NUMA
domains/socket (8/node)

● 128 physical cores
● 256 logical cores
● Memory access on

remote NUMA domains
are slower

46

Sample Perlmutter CPU Batch Script - MPI
#!/bin/bash
#SBATCH -q regular
#SBATCH -N 40
#SBATCH -t 1:00:00
#SBATCH -C cpu
#SBATCH -L SCRATCH
#SBATCH -J myjob

srun -n 1280 -c 8 --cpu_bind=cores ./mycode.exe

● There are 256 logical CPUs (the number Slurm sees) on each node
● “-c” specifies #_logical_CPUs to be allocated to each MPI task
● --cpu-bind is critical especially when nodes are not fully occupied

32 MPI tasks per node
in this example

47

 Sample Perlmutter CPU Batch Script - Hybrid
MPI/OpenMP

#!/bin/bash
#SBATCH -q regular
#SBATCH -N 40
#SBATCH -t 1:00:00
#SBATCH -C cpu

export OMP_NUM_THREADS=8
export OMP_PROC_BIND=spread
export OMP_PLACES=threads

srun -n 320 -c 32 --cpu-bind=cores ./mycode.exe

● Set OMP_NUM_THREADS
● Use OpenMP standard settings for process and thread affinity
● Again, “-c” specifies #_logical_CPUs to be allocated to each MPI task

○ with 8 MPI tasks per nodel, set 256 logical CPUs / 8 =32 for ”-c”
○ “-c” value should be >= OMP_NUM_THREADS

8 MPI tasks per node
 in this example

48

CPU and GPU Compute Nodes Affinity
Perlmutter

CPU
CPU on

Perlmutter GPU

Physical cores 128 64

Logical CPUs per
physical core 2 2

Logical CPUs per node 256 128

NUMA domains 8 4

-c value for srun 2* floor(128/tpn) 2*floor(64/tpn)

tpn = Number of MPI tasks per node

CPU on Perlmutter GPU

49

Process / Thread / Memory Affinity
● Correct process, thread and memory affinity is critical for getting

optimal performance on Perlmutter CPU and GPU
○ Process Affinity: bind MPI tasks to CPUs
○ Thread Affinity: bind threads to CPUs allocated to its MPI process
○ Memory Affinity: allocate memory from specific NUMA domains

● Both -c xx and --cpu-bind=cores are essential, otherwise
multiple processes may land on the same core, while other
cores are idle, hurting performance badly

● https://docs.nersc.gov/jobs/affinity/

https://docs.nersc.gov/jobs/affinity/

50

Use salloc to Run Debug and Interactive Jobs
● You can run small parallel jobs interactively on dedicated nodes
● Debug

○ Max 8 nodes, up to 30 min
% salloc -N 20 -q debug -C cpu -t 30:00

● Interactive (highly recommend to use this!!)
○ Instant allocation (get nodes in 6 min or reject)
○ Max 4 nodes, walltime 4 hrs

% salloc -N 2 -q interactive -C cpu -t 2:00:00
○ More information

■ https://docs.nersc.gov/jobs/examples/#interactive
■ https://docs.nersc.gov/jobs/interactive/

https://docs.nersc.gov/jobs/examples/#interactive
https://www.nersc.gov/users/live-status/

51

Use “shared” QOS to Run Serial Jobs
● The “shared” QOS allows multiple executables from different users to share a

node
● Each serial job run on a single physical core of a “shared” node
● Up to 128 (Perlmutter CPU) jobs from different users depending on their memory

requirements

#SBATCH -q shared
#SBATCH -t 1:00:00
#SBATCH --mem=4GB
#SBATCH -C cpu
#SBATCH -J my_job
./mycode.x

● Charged by a fraction of a node used
● https://docs.nersc.gov/jobs/examples/#shared
● Also available on Perlmutter GPU

https://docs.nersc.gov/jobs/examples/#shared

52

Bundle Jobs
Multiple Jobs Sequentially:
#!/bin/bash
#SBATCH --qos=debug
#SBATCH --nodes=4
#SBATCH --time=10:00
#SBATCH --licenses=cfs,scratch
#SBATCH --constraint=cpu

each srun uses 4 nodes
srun -n 128 -c 8 --cpu_bind=cores ./a.out
srun -n 64 -c 16 --cpu_bind=cores ./b.out
srun -n 32 -c 32 --cpu_bind=cores ./c.out

Multiple Jobs Simultaneously:
#!/bin/bash
#SBATCH --qos=debug
#SBATCH --nodes=8
#SBATCH --time=30:00
#SBATCH --licenses=scratch
#SBATCH --constraint=cpu

3 sruns combined use 8 nodes
srun -N 2 -n 176 -c 2 --cpu_bind=cores ./a.out &
srun -N 4 -n 432 -c 2 --cpu_bind=cores ./b.out &
srun -N 2 -n 160 -c 2 --cpu_bind=cores ./c.out &
wait

● Request total number of nodes needed
● No applications are shared on the same nodes
● Make sure to use “&” (otherwise run in sequential) and

“wait” (otherwise job exit immediately)
● https://docs.nersc.gov/jobs/examples/#multiple-parallel-jo

bs-simultaneously

● Request largest number of nodes
needed

● https://docs.nersc.gov/jobs/examples/#
multiple-parallel-jobs-sequentially

https://docs.nersc.gov/jobs/examples/#multiple-parallel-jobs-simultaneously
https://docs.nersc.gov/jobs/examples/#multiple-parallel-jobs-simultaneously
https://docs.nersc.gov/jobs/examples/#multiple-parallel-jobs-sequentially
https://docs.nersc.gov/jobs/examples/#multiple-parallel-jobs-sequentially

53

Dependency Jobs
perlmutter% sbatch job1
Submitted batch job 1655447

perlmutter% sbatch --dependency=afterok:165547 job2
or
perlmutter% sbatch --dependency=afterany:165547 job2

perlmutter% sbatch job1
submitted batch job 1655447

perlmutter% cat job2
#!/bin/bash
#SBATCH -q regular
#SBATCH -N 1
#SBATCH -t 1:30:00
#SBATCH -d afterok:1655447
#SBATCH -C cpu
srun -n 64 -c 4 –cpu-bind=cores ./a.out

perlmutter% sbatch job2

https://docs.nersc.gov/jobs/example
s/#dependencies

https://docs.nersc.gov/jobs/examples/#dependencies
https://docs.nersc.gov/jobs/examples/#dependencies

54

Job Arrays
#!/bin/bash
#SBATCH -q regular
#SBATCH -N 1
#SBATCH -t 1:00:00
#SBATCH --array=1-10
#SBATCH -L SCRATCH
#SBATCH -C cpu

cd test_$SLURM_ARRAY_JOB_ID
srun ./mycode.exe

● Better managing jobs, not necessary
faster turnaround

● Each array task is considered a single
job for scheduling

● Use $SLURM_ARRAY_JOB_ID for
each individual array task

https://docs.nersc.gov/jobs/examples/#job-arrays

https://docs.nersc.gov/jobs/examples/#job-arrays

55

Use Workflow Management Tools
● These tools can help data-centric science to automate moving data,

multi-step processing, and visualization at scales.
● Please do not do below!

for i = 1, 10000

 srun -n 1 ./a.out

It is inefficient and overwhelms Slurm scheduler
● Available workflow tools include: GNU parallel, Taskfarmer,

Fireworks, Nextflow, Papermill, etc.
● One usage case is to pack large number of serial jobs into one script
● https://docs.nersc.gov/jobs/workflow-tools/

https://docs.nersc.gov/jobs/workflow-tools/

56

GNU Parallel Is Better Than Shared QOS
perlmutter% module load parallel

perlmutter% seq 1 5 | parallel -j 2 'echo
"Hello world {}!"; sleep 10; date'
Hello world 1!
Wed 07 Jun 2023 10:22:11 PM PDT
Hello world 2!
Wed 07 Jun 2023 10:22:11 PM PDT
Hello world 3!
Wed 07 Jun 2023 10:22:21 PM PDT
Hello world 4!
Wed 07 Jun 2023 10:22:21 PM PDT
Hello world 5!
Wed 07 Jun 2023 10:22:31 PM PDT

● Packed jobs have massively
reduced total queue wait
○ Can also pack single-node

tasks into multiple node jobs
● No risk of Slurm overload
● Run combinations of tasks in

parallel and sequence
● Easy input substitution

○ If you need it, much more
power is available

● Superior to task arrays, too
● https://docs.nersc.gov/jobs/workflow/

gnuparallel/

https://docs.nersc.gov/jobs/workflow/gnuparallel/
https://docs.nersc.gov/jobs/workflow/gnuparallel/

57

Sample GPU Job Script
#!/bin/bash
#SBATCH --account=mxxx
#SBATCH --qos=regular
#SBATCH --nodes=2
#SBATCH --time=60
#SBATCH --constraint=gpu
#SBATCH --job-name=myjob
#SBATCH --ntasks-per-node=64
#SBATCH --cpus-per-task=2
#SBATCH --gpus-per-node=4

export OMP_NUM_THREADS=1
srun -n 128 --cpu-bind=cores --gpu-bind=closest <executable>

● By default all processes will have access to all GPUs.
● A round robin assignment does not guarantee affinity.
● To guarantee that closest GPU is assigned: -gpus-bind=closest
● To bind ranks to individual cores: -cpu-bind=cores

c = 2*floor(64/tpn)

Where:
tpn = ntasks-per-node

58

1 Node, 4 Tasks, 4 GPUs
1 GPU visible to each task¶

#!/bin/bash
#SBATCH -A ntrain3
#SBATCH -C gpu
#SBATCH -q regular
#SBATCH -t 1:00:00
#SBATCH -N 1
#SBATCH --ntasks-per-node=4
#SBATCH -c 32
#SBATCH --gpus-per-task=1
export SLURM_CPU_BIND="cores"
srun ./gpus_for_tasks

Default for –gpus-per-task=1 is 1 task only
see 1 GPU

 4 GPUs visible to each task¶

#!/bin/bash
#SBATCH -A ntrain3
#SBATCH -C gpu
#SBATCH -q debug
#SBATCH -t 10:00
#SBATCH -N 1
#SBATCH --ntasks-per-node=4
#SBATCH -c 32
#SBATCH --gpus-per-task=1
#SBATCH --gpu-bind=none
export SLURM_CPU_BIND="cores"
srun ./gpus_for_tasks

Default for –gpus-per-task=1 and
–gpu-bind-none is each task sees all GPU

https://docs.nersc.gov/systems/perlmutter/running-jobs/#1-node-4-tasks-4-gpus-1-gpu-visible-to-each-task
https://docs.nersc.gov/systems/perlmutter/running-jobs/#4-nodes-16-tasks-16-gpus-1-gpu-visible-to-each-task

59

Perlmutter CPU Queue Policy (as of June 2023)

60

Perlmutter GPU Queue Policy (as of June 2023)

61

NERSC Job Script Generator
https://my.nersc.gov/script_generator.php

62

Monitoring Your Jobs
● Jobs are waiting in the queue until resources are available
● Overall job priorities are a combination of QOS, queue wait time, job size,

wall time request, etc.
● You can monitor with

○ squeue: Slurm native command
○ sqs: NERSC custom wrapper script
○ sacct: Query Completed and Pending Jobs
○ https://docs.nersc.gov/jobs/monitoring/

● On the web
○ https://www.nersc.gov/users/live-status/ 🡺 Queue Look
○ https://iris.nersc.gov the “Jobs” tab

https://docs.nersc.gov/jobs/monitoring/
https://www.nersc.gov/users/live-status/
https://iris.nersc.gov

Data Analytics Software and Services

64

Production Data Software Stack
Capabilities Technologies

Data Transfer + Access

Workflows

Data Management

Data Analytics

Data Visualization

TaskFarmer

65

Data Analytic Software Services
● Globus Online
● Science Gateways
● Databases
● Shifter / Podman
● Python
● Jupyter
● Machine Learning / Deep Learning
● Workflows
● And more …

66

Globus Online: Move Data
● https://www.globus.org https://docs.nersc.gov/services/globus/
● The recommended tool for moving data in&out of NERSC

○ Reliable & easy-to-use web-based service:
■ Automatic retries
■ Email notification of success or failure

○ NERSC managed endpoints for optimized data transfers
■ NERSC DTN (dedicated data transfer system), NERSC Perlmutter,

NERSC HPSS, etc.
○ Other Center has endpoints, such as OLCF DTN
○ Setup Globus Connect Personal to ease transfer between

local system (such as laptop) and NERSC systems

https://www.globus.org
https://docs.nersc.gov/services/globus/
https://app.globus.org/file-manager/gcp

67

Globus File Transfer Example

68

Data Transfer General Tips
● Use Globus Online for large, automated or monitored

transfers
● cp, scp, or rsync is fine for smaller, one-time transfers

(<100 MB)
○ But note that Globus is also fine for small transfers

● Use give-and-take to share files between NERSC users
○ % give -u <receiving_user> <file or directory>
○ % take -u <sending_user> <filename>

69

Access for External Collaborators
● Web Portals

○ NERSC supports project-level public http access
■ Project specific area can be created:

/global/cfs/cdirs/<your_project>/www
■ These are available for public access under the URL:

http://portal.nersc.gov/cfs/<your_project>

○ Each repo has a /project space, can publish as above
● Special Science Gateways can be created.

○ Sophisticated ones can be made with SPIN
https://docs.nersc.gov/services/spin/
https://www.nersc.gov/users/training/spin/ (SPIN workshop required)

○ Details at: https://docs.nersc.gov/services/science-gateways/

https://docs.nersc.gov/services/spin/getting_started/
https://www.nersc.gov/users/training/spin/
https://docs.nersc.gov/services/science-gateways/

70

Shifter

● NERSC R&D effort, in collaboration with Cray, to support
Docker Application images

● “Docker-like” functionality on the Cray and HPC Linux clusters.
Enables users to run custom environments on HPC systems.

● Addresses security issues in a robust way
● Efficient job-start & Native application performance

https://docs.nersc.gov/development/shifter/how-to-use/

https://docs.nersc.gov/development/shifter/how-to-use/

71

Shifter Accelerates Python Applications

● Shifter is especially
helpful for python
applications

● A large number of
shared libraries
needed on compute
nodes before
execution

72

Create an Image with Docker
FROM ubuntu:14.04
MAINTAINER Shane Canon scanon@lbl.gov
Update packages and install dependencies
RUN apt-update –y && \
 apt-get install -y build-essential

Copy in the application
ADD . /myapp
Build it
RUN cd /myapp && \
 make && make install

Dockerfile

laptop> docker build -t scanon/myapp:1.1 .
laptop> docker push scanon/myapp:1.1

73

Use the Image with Shifter
#!/bin/bash

#SBATCH -N 16 -t 20

#SBATCH --image=scanon/myapp:1.1

module load shifter

export TMPDIR=/mnt

srun -n 16 shifter /myapp/app

cori> shifterimg pull scanon/myapp:1.1
cori> sbatch ./job.sl

Submit script
job.sl

74

Try this: Podman

• Podman (Pod manager) is an Open Container Initiative compliant
container framework under active development by Red Hat

• Free and open source
• Usable anywhere (including your laptop), not just NERSC
• Can provide rootless containers, which give users the ability to run as

root within their image while still maintaining security
• Will allow users to build images on Perlmutter login nodes
• Performance in most cases should be similar to what is currently

possible with Shifter (i.e. it’s fast!)
• https://docs.nersc.gov/development/podman-hpc/overview/
•

https://docs.nersc.gov/development/podman-hpc/overview/

75

Python
● Extremely popular interpreted language, continuing to grow
● Libraries like NumPy, SciPy, scikit-learn commonly used for scientific

analysis
● Are used for ML/DL
● Python is fully supported at NERSC - we use Anaconda Python to provide

pre-built environments and the ability for users to create their own
environments

76

Python
● Avoid running “conda init” which will hardcode conda initialization in

your shell startup file ($HOME/.bashrc)
● Do not use /usr/bin/python, instead:

 module load python
 which already includes basic packages: numpy, scipy, mpi4py

● Guide to use Python on Perlmutter:
○ https://docs.nersc.gov/development/languages/python/using-python-perlmutter

https://docs.nersc.gov/development/languages/python/using-python-perlmutter/

77

Create a custom conda environment:
perlmutter> module load python

perlmutter> conda create --name myenv --yes python=3.10

perlmutter> conda activate myenv

(myenv) perlmutter> python

Python 3.10.4 (main, Mar 31 2022, 08:41:55) [GCC 7.5.0] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>>

Use Python inside a Shifter container:
perlmutter> shifter --image=docker:library/python:latest python

Python 3.10.7 (main, Sep 13 2022, 14:31:33) [GCC 10.2.1 20210110] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>>

Other options for using Python at NERSC

https://docs.nersc.gov/development/languages/python/nersc-python/

https://docs.nersc.gov/development/languages/python/nersc-python/

78

Building and using mpi4py
•mpi4py provides a Python interface to MPI
•mpi4py is available via module load python
•This mpi4py is CUDA-aware (can communicate GPU objects)
•To build your own CUDA-aware mpi4py, follow this recipe:
perlmutter> module load PrgEnv-gnu cudatoolkit python
perlmutter> conda create -n cudaaware python=3.9 -y
perlmutter> conda activate cudaaware
perlmutter> MPICC="cc -target-accel=nvidia80 -shared" pip install
--force-reinstall --no-cache-dir --no-binary=mpi4py mpi4py

•Be aware that with any CUDA-aware mpi4py, you must have
cudatoolkit loaded, even for code that does not use the GPU

79

Getting started with GPUs in Python
• NumPy and SciPy do not utilize GPUs out of the box

• There are many Python GPU frameworks out there:
o “drop in” replacements for numpy, scipy, pandas, scikit-learn, etc

o CuPy, RAPIDS
o “machine learning” libraries that also support general GPU

computing
o PyTorch, TensorFlow, JAX

o “I want to write my own GPU kernels”
o Numba, PyOpenCL, PyCUDA, CUDA Python

o multi-node / distributed memory:
o mpi4py+X, dask, cuNumeric

80

Getting started with GPUs in Python (CuPy)

> module load python

> conda create -y --name cupy-demo python=3.9 numpy scipy

> conda activate cupy-demo

> pip install cupy-cuda11X

> python

>>> import cupy as cp

>>> print(cp.array([1, 2, 3]))

[1 2 3]

See documentation at https://docs.nersc.gov/development/languages/python/using-python-perlmutter/
or open a ticket at https://help.nersc.gov/

Check your package documentation to see
cudatoolkit compatibility requirements

Note: cudatoolkit module is loaded by default
Current default version is cudatoolkit/11.7

https://docs.nersc.gov/development/languages/python/using-python-perlmutter/
https://help.nersc.gov/

81

What is Jupyter?
Interactive open-source web application

Allows you to create and share documents, “notebooks,” containing:
Live code
Equations
Visualizations
Narrative text
Interactive widgets

Things you can use Jupyter notebooks for:
Data cleaning and data transformation
Numerical simulation
Statistical modeling
Data visualization
Machine learning
Workflows and analytics frameworks
Training and Tutorials

https://docs.nersc.gov/services/jupyter/

https://docs.nersc.gov/services/jupyter/

82

Available Notebook Servers

83

Available Jupyter Kernels

Your own custom
kernels

And many NERSC
provided kernels:
Python, Julia, ML/DL
packages etc.

84

Your Own Custom Jupyter Kernel
Most common Jupyter question:

“How do I take a conda environment and use it from Jupyter?”

Several ways to accomplish this, here’s the easy one.

$ module load python
$ conda create -n myenv python=3.9 ipykernel <more-packages-to-install>
$ conda activate myenv
(myenv) $ python -m ipykernel install --user --name myenv-jupyter

Point your browser to jupyter.nersc.gov.
(You may need to restart your notebook server via control panel).
Kernel “myenv-jupyter” should be present in the kernel list.

85

Additional Customization

{
 "argv": [
 "/global/homes/y/yunhe/jupyter-helper.sh",
 “python”,
 “-m”,
 “ipykernel_launcher”,
 "-f",
 "{connection_file}"
],
 "display_name": "myenv-jupyter2",
 "language": "python",
}

The helper script is the most
flexible approach for NERSC users
since it easily enables modules.

Meanwhile, in jupyter-helper.sh:
#!/bin/bash
export SOMETHING=123
module load texlive
exec python -m ipykernel "$@”

edit:
$HOME/.local/share/jupyter/kernels/myenv-jupyter/kernel.json

86

NERSC Deep Learning Software Stack Overview
https://docs.nersc.gov/machinelearning/
Frameworks:

Distributed training libraries:
● Horovod
● PyTorch distributed
● Cray Plugin

Productive tools and services:
● Jupyter, Shifter

https://docs.nersc.gov/machinelearning/

87

How to Use NERSC DL Software Stack
● We have modules you can load which contain python and DL

libraries
○ module load tensorflow/<version>
○ module load pytorch/<version>

● You can install your own packages on top to customize
○ pip install --force-reinstall --no-cache-dir --user MY-PACKAGE

● Or you can create your conda environments from scratch
○ conda create -n my-env MY-PACKAGES

● We also have pre-installed Jupyter kernels

88

Containerized DL: using Shifter on Perlmutter
To see images currently available:

shifterimg images | grep pytorch
To pull desired docker images onto Perlmutter:

shifterimg pull <dockerhub_image_tag>
To use interactively:

shifter --module gpu --image=nvcr.io/nvidia/pytorch:22.05-py3

Use Slurm image shifter options for best performance in batch jobs:

#SBATCH --image=nersc/pytorch:ngc-22.05_v1
srun shifter python my_python_script.py

89

Jupyter for Deep Learning
JupyterHub service provides a rich,
interactive notebook ecosystem
● Very popular service with hundreds of users
● A favorite way for users to develop ML code

Users can run their deep learning workloads
● Using our pre-installed DL software kernels

on dedicated Perlmutter GPU nodes
● Using user custom kernels

89

https://docs.nersc.gov/services/jupyter/#conda-environments-as-kernels

Hands-on Exercises

91

Compiling and Running Jobs on Perlmutter
● % ssh <user>@perlmutter.nersc.gov (or ssh <user>@saul.nersc.gov)
● % cd $SCRATCH
● % git clone https://github.com/NERSC/intro-NERSC-resources.git
● % cd intro-NERSC-resources

CPU Examples:
- 01-hello: build and run basic MPI program on CPU
- 02-matrix: build and run a hybrid MPI/OpenMP matrix multiply code on CPU
- 03-xthi: a hybrid MPI/OpenMP code, mainly on CPU affinity settings
GPU Examples:
- 04-pi_targ: build and run an OpenMP target offload program on GPU
- 05-gpus_for_tasks: build and run a CUDA code on GPU, and gpu affinity settings

https://github.com/NERSC/intro-NERSC-resources.git

92

Using Compute Node Reservations

● Existing NERSC users are added to “ntrain3” project
● Perlmutter node reservations available from 2-3:30 pm

today
● User reservations with --reservation=xxx -A ntrain3, where

○ xxx is “intro_cpu” or “intro_gpu”

93

Thank You

