QC and HPC: the Path from the Experimental to Routine Computing

Anastasiia Butko

Computer Architecture Group Lawrence Berkeley National Lab

2023 Computing Sciences Summer Program Talk Series, Berkeley, CA

June 15, 2023 🔳

Source: Courtesy of Kunle Olukoton, Lance Hammond, Herb Sutter and Burton Smith

Path Forwards

J.Shalf "The future of computing beyond Moore's Law" 2020

х

Path Forwards

J.Shalf "The future of computing beyond Moore's Law" 2020

х

Myth or Reality?

quantum computer

× Ų Q

2021

People also ask	
Do quantum computers exist now?	~
How powerful is a quantum computer?	~
Who has a quantum computer?	~
How much does a quantum computer cost?	~

Myth or Reality?

quantum computer

× Q

2021

People also ask	
Do quantum computers exist now?	~
How powerful is a quantum computer?	~
Who has a quantum computer?	~
How much does a quantum computer cost?	~

2023

People also ask 🕴	
What does a quantum computer do?	Ŷ
Do quantum computers exist now?	*
How long until quantum computers exist?	~
Can anyone use a quantum computer?	v.
	Feedback

Timeline

Peter Shor inver (in)famous Sho algorithm , spa tremendous inv interest in Quar Computing	nts the p r's rking a crease of ntum	Quantum su (the potentia Quantum Ca devices to su problems th computers p cannot) is re	abremacy al ability of computing olve at classical practically pached	Organisation preparing for quantum rev education ar awareness	s are the alution by nd raising	Financiai begin to k Quantum	services average Computing	Great amou business ca production environmer	unt of ases in ats	What's next
1994		2018		2019		2025		2035		2038
1		1		1		1		1		1
	[1		1		1		1	
	1998		2019		2023		2027		2038	
	The first working 2-qubit Quantum Computer demonstrated		IBM launches first 20- qubit commercial quantum computer named Q System One		Meaningful Quantum Computing use cases delivering an advantage		Quantum Computing machine learning begins to impact Al		Encryption RSA potentially cracked by Quantum Computing	

QNTM: Entering the era of Quantum Computing www.qntm.be

Moving from experimental to 'routine'

Needs experimentalists/physicists assistance

- Needs experimentalists/physicists assistance
- Focus on the proof of concept, not solving the problem

- Needs experimentalists/physicists assistance
- Focus on the proof of concept, not solving the problem
- Metrics

- Needs experimentalists/physicists assistance
- Focus on the proof of concept, not solving the problem
- Metrics
- Lack of standards

- Needs experimentalists/physicists assistance
- Focus on the proof of concept, not solving the problem
- Metrics
- Lack of standards
- Complex environments

Path from the Experimental to Routine Computing

Challenges

Quality

Quality of Qubits

Extremely sensitive to noise

- from outside environment
- from neighboring qubits
- from unknown sources

Research directions

- noise modeling
- noise mitigation

error correction

remove

ignore

qubit isolation

Quality of Qubits

Has limited *lifetime*

depends on technology

Research directions

material science/technology

Qubit's Technology Diversity

Path from the Experimental to Routine Computing

Challenges

Quantity

Number of Qubits

Quantum computers are getting more powerful

Number of qubits achieved by date and organization 1998 - 2020*

Number of Qubits

Number of Qubits

The Reality is...

Number factorization problem

Path from the Experimental to Routine Computing

Challenges

Everything Else

Quantum computer vs. accelerator

Inaccuracy of terminology

• Quantum computer ≠ Quantum Processor

Advanced Quantum Testbed (AQT)

- DOE funded cross-disciplinary project
 - quantum physicists (QNL, MIT LL)
 - material scientists (MF)
 - computer scientists (CRD)
 - engineers (ATAP)
 - industry partners

Controls, controls, and more controls...

Zurich Instruments

QUASAR/ QubiC 1.0

QICK on ZCU-111 & integrated AFE board

A mixture of commercial and open-source

Not shown here:

- Keysight
- Qblox
- Etc
- No 'perfect', comprehensive solution to meet all experimental needs.

The Control Landscape

- Scaling up existing qubits to systems of 100s-1000s of physical qubits (and more)
- Exploring the novel qubit space and gate-development with 1-2 qubit experiments
- Theorists (and experimentalists alike) proposing experiments requiring more advanced control features (arbitrary feedback/feed-forward schemes, access to the FPGA sandbox)
- Different paths to development; what is the interplay and the role of each?
 - Commercial controls solutions: Keysight, Qblox, Quantum Machines, Zurich Instruments, etc
 - Proprietary integrated controls in industry
 - Open-Source solutions: QICK from Fermilab, QubiC from Berkeley Lab
- Cryogenic controls? Multiplexing? Modularity? Extensibility? What does the 'perfect' control system of the future look like?

Low-temperature Control System for Superconducting Quantum Processor

Control System

Quantum ISA

Software Control

 \mathbf{v}

 \mathbf{v}

 \mathbf{v}

- Everything in one place
- Easier to implement and modify
- NISQ experiments

- Long latency
- Limited bandwidth
- Limited flexibility (bit granularity)

XXXX

• Poor scalability

Hardware Control

V V

 \mathbf{v}

V V V

- Reduced latency
- Fast feedback
- Extended functionality in-place
- Potential scalability
- Separation of concepts
- Beyond-NISQ

- Requires specialized solution
- Harder to implement and modify
- Requires commercial support

Quantum ISA (QUASAR)

- Quantum Instruction Set Architecture (QUASAR)*
 - extension to RISC-V ISA (open-source, modular, active community, eco-system)
 - supports quantum operations, timing control, etc.
 - transparent, adaptable, open **
- RoCC co-processor adaptation
 - Existing software support
 - Modular approach easily interactable into a big system
 - Low-level customization and flexibility

6	1	5		8	5	5	2	
	imm[8]		ir	mm[7:0]		opcode		
			QU	BIT		GATE		
6	1	5	5	3	5	5	2	
	imm[3]		rs1	imm[2:0]		opcode		
			QL	JBIT		GATE		
x	90i	Q	JBIT	1;				
ADDI x3, 0, QUBIT MAS					SK;			
Y180 x.			x3;					
CNOT QUBIT_1_0, QUBIT_1						I_1;		
TSi TIME_STAMP;								

* A. Butko, et al. "Understanding quantum control processor capabilities and limitations through circuit characterization". IEEE ICRC (2020)

** https://ipo.lbl.gov/quantum-instruction-set-architecture-quasar/

Experimental Setup:

- VC707 FPGA connected to the fridge with the Berkeley QP
- QUASAR-based system deployed on FPGA
- Linux OS running quantum algorithms

Fast Feedback Demo:

- Mid-circuit measurement
- Statistically significant data collection
- Conditional branching at runtime

Low-temperature Control System for Superconducting Quantum Processor

Future Systems

Low-Temperature Control

Hardware Control

What about this?

Low temperature

X X X

Integrated scalability

Far Beyond-NISQ

•

New architectures

New Trends: Low-temperature Technologies

B. Patra et al., "A Scalable Cryo-CMOS 2-to-20GHz Digitally Intensive Controller for 4×32 Frequency Multiplexed Spin Qubits/Transmons in 22nm FinFET Technology for Quantum Computers," 2020 IEEE International Solid-State Circuits Conference - (ISSCC), 2020

Figure 19.1.1: Qubit control signals, current state-ol-the-art controller and presented cryogenic controller with frequency multiplexing.

L. Petit et al., "Universal quantum logic in hot silicon qubits," Nature, 2020.

S. J. Pauka et al., "A cryogenic cmos chip for generating control signals for multiple qubits," Nature Electronics, 2021.

Noise Budget Power Budget Monolithic Integration

Adiabatic Quantum-Flux-Parametron (AQFP)

- Energy-Efficient Circuits *
- Dynamic energy dissipation is reduced due to the adiabatic switching operations using AC excitation currents
- AQFP could overcome the power/energy dissipation limitation in conventional superconductor logic families such as rapid-single-flux-quantum (RSFQ)

* Chen, O. et al. "Adiabatic Quantum-Flux-Parametron: Towards Building Extremely Energy-Efficient Circuits and Systems." Scientific Reports 9 (2019): n. pag.

Circuit Complexity

CEQIP-4 Energy versus Delay for Interconnects of 1 mm Length

CEQIP-3 Energy versus Delay for Intrinsic Elements

** Cryogenic Electronics and Quantum Information Processing," IEEE International Roadmap for Devices and Systems, 2020IRDS_CEQIP, 2020. https://irds.ieee.org/editions/2020

1.E-8

Superconducting Logic Research

Opportunity: Low power, ultra-high performance computing

- 600+GHz clock frequencies demonstrated in lab for superconducting RSFQ logic
- Lossless electrical data transmission
- Lower power (even with cryo-refrigeration taken into account)

Active Research Directions

 SuperTools: Develop superconducting variant of RISC-V processor to evaluate emerging Superconducting Electronic Design Tools for iARPA.

SUPERTOOLS

Produce examples that will generate interest from potential stakeholders (that make use of the SuperTools EDA)

- Dataflow CGRA for streaming DSP (many uses)
- Temporal Logic
- Quantum Control (QUASAR)

Low-temperature Control

F. China et al., "Design and Demonstration of Interface Circuits Between Rapid Single-Flux-Quantum and Adiabatic Quantum-Flux-Parametron Circuits", 2016

Voltage-to-Frequency ADC

VC C L3 V B1 rg B1 Vg Vg Vg

AQFPBlock	Runtime		Base Model		Majority Model			
		Delay	JJ Count	Energy	Delay	JJ Count	Energy	
Counter	<1s	12	144	720 zJ	12	126	630 zJ	
Memory 1KiB	4d3h30m	64	2001576	10 fJ	56	1793942	8.97 fJ	
Reg File 8x8	4s	20	8164	40.82 aJ	20	8246	41.23 aJ	
Buffer	19s	36	41334	207 aJ	32	35508	178 aJ	
QUASAR	5d19h29m	108	789416	3.95 fJ	108	786680	3.93 fJ	

Credit to Darren Lyles and Meriam Bautista

Moving from experimental to 'routine'

Enabling 'routine' computing, continuing experimenting

Thank you for your attention. Questions?

