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Introductions

• 2011 PhD in Computer Science (University of Sheffield, UK)
– Optimizing HPC jobs in agent-based simulations

• Postdocs in Cloud Computing (University of Oxford, Leeds)
• Royal Society Scientist at Westminster London 
• 2016 Joined ESnet, LBNL
• 2023 Joined ORNL as Group Lead for Quantum networks
• Research Area : AI for Networking - Self-driving networks

– Impacts distributed science workflows
– Expanding AI from optic networks to wireless and quantum networks 
– Contributions to other science areas: 

• Self-driving lasers
• Self-driving batteries 
• Self-driving quantum transducers

and more..
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R&E Network for Large-scale Science

ESnet from DOE

● Networks are built for resilience 
● Science traffic is highly variable 
● Resources are often underutilized 

and expensive
● Quality of Network Performance is 

crucial for Science

Need for predictability and infrastructure 
adaptability

Challenge: how can we optimize and 
automate network resources (i.e. links) to 
adapt to variable workloads? 

3

ESnet Network and its 
utilization in 2019 over 
100GB links40% 

average
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“Self-Driving” a triggering word!

“Systems manage themselves according to an administrator’s goals. New components 
integrate as effortlessly as a new cell establishes itself in the human body. These 
ideas are not science fiction, but elements of the grand challenge to create self-managing 
computing systems.”

- Kephart, Chess (IBM) 2003

Vision: Future is Hyper Connected! with Self-driving Elements…

4

Facility 1

Facility 2 Beamlines
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Exponentially growing 
data rates

● Upto 58 GBytes/s week 
avg

● 50% increase/year & 
60X/decade

Network beyond “lab 
borders”

● 10x decrease in latency
● 10x increase throughput
● 100x network 

performance, traffic 
capacity

● VR/AR, ability to handle 
real-time emergency 
edge intelligence 

Evolving Edge and 
Quantum

● Increased instruction/s
● Machine learning at 

edge
● Access to more data
● Advent of Quantum 

Computations and 
transfers

Self-Driving Networks for Science
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DOE Early Career Research Project 2017-2023
Self-Driving 5G Network for Science 2021-2024

Poseidon (Intelligent Infrastructure for Science Workflows) 2021-2024 
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Classification

● Big data Challenges
● Data cannot be 

moved to HPC (due 
to security)

Prediction

● Random peaks or 
sudden data 
transfers

● Capped utilization at 
40%

Reaction with Control

● Random peaks or 
sudden data transfers

● Capped utilization at 
40%

● Integration with 
Network controllers

Early Career Research Project (2017-2023)
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Large-scale and Deep Learning for Networking 

Compute facility network 

data 2020 Predicting CHIC-KANS link
Simulation
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“Networks should learn to drive themselves”*

7

Can do simple actions such as improving availability, attack resilience and dealing with 
scale. Our argument is AI is needed for mission critical actions.

[*] Why (and How) Networks Should Run Themselves, 
Feamster, Rexford

Example controllers:
Ryu, OpenDaylight, OSCARS

Listener APIs

Supervised/Unsupervised 
classification: anomaly detection

Regression: forecasting

Action 
plan

Network 
Telemetr
y

Execute Control

Reward function Inputs to AI agent

try different 
optimization 
strategies
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Problem: Classification in Network Flows

8

Looking for ‘Cats’ in Flows

Kiran et al. Machine learning-based Analysis of COVID-19 Pandemic Impact on

Research and Education Networks, ACM SIGCOMM Journal 2021

Covid experimentations 
at DOE Compute

Distinct server connections, 
changes in traffic profiles 

Scientist working 
patterns have changed
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• No Periodicity exists

• Produces a smoothed out 

• Trend, seasonal or noise can be used 
to enhance your predictions

• Statistical predictions do not perform 
well

– Nature of data

9

Looking for Patterns in Transfers
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Mapping a Sudden Burst in May 
2018:

• Traffic from SACR→DENV flows 
into DENV→KANS

• Traffic in SUN→ELPA flows into 
ELPA→HOUS

10

Patterns from Correlating Links can show 
Common Behaviors among Users 
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Historic traffic metrics 

ESnet WAN 
network

Future traffic metrics

8.00 AM   …   10.00AM 10.00 AM   …   12.00PM
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Problem: Prediction for WAN traffic

• Network as graph
• V = Vertices (sensors)
• E = Edges (roads)
• A = Weighted adjacency matrix  

(A function of the bandwidth, p Pearson correlation 
coefficient, cov covariance) 

Solution: Graph neural networks
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Mallick et al, Dynamic graph neural network for traffic 

forecasting in wide area networks, IEEE Big Data, 2020

Encoder-decoder architecture of D-DCRNN
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• Varied the input horizon duration as 6, 12, 18, 24, 30, 36, 42, and 48 hours 
to forecast for next 24 hours

• Mean (μ) and standard deviation (σ) of R2 and MAPE values for varying 
input horizon durations

Best performance achieved with 30 hrs 
input horizon duration

Impact of Input Horizon Duration
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GNN improves Prediction Accuracy among other 
models
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Problem: Reaction with Control

Our requirements:

• High performance throughput with low loss for huge time sensitive data 
transfers

• Latency sensitive communications: cloud, video, command/control for 
engineering

• Bandwidth reservation: OSCARS

This is a Multi-Objective optimization problem

15



Representing Network as Deep Learning Problem

16

deep RL 
learning

action

Network 
telemetry

reward

Reconfigure 
network

Training Loop

e.g. update flow 
tables and 
forwarding rules

e.g. flow 
completion time, 
latency

observation

Model-based 
learning

Model-free 
learning

Predicting Future 
Congestion 

Study traffic patterns
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Data-driven (active) learning through experience 

st - state
ot - observation
at - action
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A

C

B

D

ot

A

C

B

D

at
𝛑𝜽 (at|ot)

s1, o1

a1

s2, o2

a2

p(st+1|st,at)

sn, on

p(st+1|st,at)

Markov property helps represent system as 
state-action pairs

action 1

action 2

e.g. 4-node network

A->D

Deep Reinforcement Learning



Conductor vs Orchestrator: Data-driven learning 
Combines with multi-agent reinforcement learning

Network topology

Agent

State
(1)

Action 
(2)

Reward
(3)

Learn 
policy/value

Network 
health data

Topology

Traffic 
Classes

*Reward: Optimize for 
average utilization, 
latency, used links 



Developing HECATE (learning controller)
Architectural diagram

HECATE 

PCE

HECATE 
Monitors
Network 
and Edge 
Systems SDN SolutionsSegment Routing

QoS / Fault 
Tolerance

AI/ML

Conductor
(Optimization)

Traffic Class 
Identifier

Simulation 
Engine

Traditional TE

Real-time

Patent filed: Data driven, machine learning augmented dynamic path optimization, 2022
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Hecate Architecture: Overview

20

Endpoint Data:
Netflow

Unsupervised 
Cluster Analysis

Network Health:
Perf Sonar

GNN Prediction of 
Future Values

Other Data

Global Multi-
Optimizer

Path 
Computation 
Engine (PCE)

Raw Data Hecate 
Orchestrator

Network 
Topology

Router

PCE

Router

Router



Identifying Traffic Classes

Site Characteristics Link Characteristics

Slow Update cycle Fast Update cycle

Traffic Classes

● Jumbo

● Interactive

● Default

Link Attributes

● Loss

● Delay

● Jitter

Netflow

Function of Time 

and Data Volume

Time Series

● Unique data analysis 
using unsupervised 
learning and clustering 
algorithms

● Real-time AI learning



Self -Driv ing Networks | BERKELEY LAB

Hecate Architecture: Network Health : Predict

Take most current health data and use to predict values for the next several time steps.

Based on work previously done

Model the network as discrete aggregated network traffic at time t, G t = (V, E, W ) 

V: Measurement Nodes
E: Edges of Network
W: Distance among Sites

Each block consists of two temporal 
gated layer and a spatial graph layer 
in between. 

Model: 
● Stack of spatio-temporal 

convolution blocks
● Output layer. 

Output layer consists of convolution, 
normalized and a fully convolution 
layer.

22
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Hecate Architecture: Global Optimizer

Based on work from DeepRoute research project

Use DRL to greedy Q-learning to simulate networks and learn optimal routing strategies 
for single optimizations

Significant movement in this field - exploring additional options

Hecate uses four types of reward functions in DRL for Graph Optimization: Loss, 
Latency, Jitter, Utilization

23

Kiran et al. Hecate: AI-driven WAN Traffic Engineering for Science, 

INDIS SC 22
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Path Computation Engine

“Brains” of the segment counting core infrastructure

Like MPLS, can stack labels which define path through network

Provides programmatic access to network control:

 Read network topology, router details, performance data

 Write to API to provide “suggestions” for path selection

We do not want to replace a routing protocol, just provide good advice

100

PCE

101

102

PCE

24
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HECATE Simulation

25

UR: link utilization rate

Moves incoming traffic to 
less used paths
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Improve packet delivery at high loads

• Improves network performance at high loads 
• Leverage traffic patterns into learning to cater to different characteristics
• Can be extended to ESnet traffic engineering protocols

26

SPA: shortest possible 
Q: Q-learning
PG: policy-gradient
MAMRL: multi-agent learning

MAMRL: Exploiting Multi-agent Meta Reinforcement Learning in WAN Traffic Engineering, arxiv, 2021



Average utilization improved

Before                                                                       After



As Science moves to Wireless, Edge and 
Quantum…

We bring our expertise into these networks as well

28
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Problem: Networks Beyond “Lab Borders”

• Optimizing Radiation science in the field

• Multiple data sources bringing fast data to HPC

• Real-time Edge Control

• Emergency corrections e.g. drones

• AI rewritten for Edge 

29

Digital Twins in Biology….5G connections for DOE NNSA



Novel “TempoSpatial” Control Plane for DOE 
Network 

With 5G requirements and 
capabilities, we see the need for 
a tempostatial control plane that 
works with heterogeneous 
hardwares to tackle edge-to-core 
challenge

30

Data 
Plane

TempoSpatia
l Control 
Plane

5G 
monitoring 
system 

Data 
sourcesE.g. SNMP, 

Netflow, 

PerfSonar, 

telemetry,

 etc

QoS 
management

AI/ML

Resource and 
routing 
optimization

Mobility and 
time 
management

Policy 
configuration

Science 
application 
requirement

Orchestration
/ Automation
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Connecting to WAN: 5G Testbed

31

UE

BaseStation

BaseStation

RAN

5G 
Core

WAN 
(ESnet)

RPi5G, 
FPGA, 
smart 
phones

Introducing 𝚯-AWR (tower)

AutoGOLE
SENSE

Other 
WANs
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𝚯-AWR in B59 LBNL

32

With Firecell kit

Why:
● Open Source
● Our own controllers to build on
● Horizontal expansion
● Research innovation and universities

Programmed 
Sim cards

Raspberry Pis 
with 5G hats
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Packet loss and throughput to find optimum 
deploy position

33

Challenges in simulation, not real world 
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Problem: Network of Quantum Computers

• Facilitate communication using distributed 
quantum states

• Reimagined science applications
• New networking challenges being introduced 

with quantum entanglement, repeaters, 
infrastructure and more…

34
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One way use Quantum Transducers

Connecting quantum computers using 
fiber optic cables necessitates the 
conversion of quantum information from 
electrical to optical frequency regimes.

How can we use control protocols to 

enhance the efficiencies of transducers?

35

Reinforcement Learning for Quantum Transducers

Figure: a) Optomechanical quantum 
transducer; b) Transduction efficiency using 
trained Reinforcement Learning Agent; c) 
Reinforcement Learning protocol.

Solution
● We use the DDPG actor-critic algorithm 

with a continuous action and state space. 
Our trained neural networks are robust to 
deviations in experimental parameters in 
inference. 

Simulation shows upto 60% efficiency (better 
than Google’s experiment), but we now know 
this is not a practical approach!

Funded LBNL LDRD (2020-2022)
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Another way explore Clock Synchronization for 
Quantum Network
Build simulation of the quantum network

• Transportation of quantum bits, consider 
attenuation

Simulation of the classical network

• Nodes make a request for sync through 
classical network

• Generate network packets to simulate traffic
• Based upon mathematical probability theory

But very preliminary work, 

- no verification with real data
- many simulation platforms exist 
- Can be relevant for distributed quantum 

sensing experiments

36

Eric Yu et al. A Simulation Study of Quantum Clock Synchronization Using Teleportation, 

IEEE International Conference on Communications 2023
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Another way explore Dumbbell Topology for 
Quantum/optic information exchange
- Explored Dumbbell topology for 

measuring how TCP interacts with 
other TCP flows

- 2 senders, 2 receivers and 1 router 
(bottleneck at the router)

- All the nodes use dedicated nics at 
25Gbps

- Avg. RTT between senders and 
receivers is 16ms

- Tuning Params:
- 32MB max buffer size
- Jumbo frames
- MTU probing
- Fair queuing

- Used multiple iperf3 processes 
and aggregated the avg. goodput 
over 5 min. tests

37

FABRIC Testbed

Quantum Experiment Reimagination:
- Explore quantum and optic information in 

the same link? 
- Can we tune the optic to improve quantum 

signal quality ?
- or explore noise among the two?



Self -driv ing Networks | BERKELEY LAB

Conclusions

• DOE science is moving towards two main areas in networks - Wireless and Quantum
• We can study these using simulations, but lack of real data is currently hindering our 

impact in these two fields. Can we build data sets for the community?
• As networking researchers, we need to lead with networking protocols and understand 

novel challenges
– 5G/6G latency and packet drops matter
– Quantum latency, quality and hardware matter

• Utilizing the optic infrastructure is key, and then building new quantum control planes to 
manage optic/quantum information in channels

• Using AI/ML for quantum, e.g. state estimation, quantum distribution protocols, control, 
and more, could be game changing 

Changing landscape: Need to understand how our scientists will be using networks with 
quantum processing for a complete end-to-end solution

39
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Clock synchronization on a quantum network

A quantum network of clocks (2014)

1. Assume that in a network with N nodes, a clock is located on each 
node (N clocks). We will label them C = {c1, c2, c3, ..., cN}, each 
with n clock qubits, Q={q1, q2, q3, ..., qn}.

2. Consider c1 as the central node, which will have an additional 2(N-
1) ancilla qubits. For ease of notation, we will split the ancilla 
qubits evenly into two sets, A = {a2, a3, a4, ..., aN}$ and B = {b2, 
b3, b4, ..., bN}.

3. Perform local entanglement with q1 and one set of the ancilla qubits 
B={b2, b3, b4, ..., bN} (apply a CNOT gate with c1 and each 
ancilla qubit of B).

4. With the remaining clocks not including the central node c2, c3, c4, 
..., cN, form EPR pairs with the other half of the ancilla qubits A. 
That is, (c2, a2), (c3, a3), (c4, a4), ..., (cN, aN).

5.  On the central node c1, perform Bell-state measurements on the 
ancilla qubits from each set on the corresponding index. That is, 
(b2, a2), (b3, a3), (b4, a4), ..., (bN, aN).



Simulation parameters

loss = δ * distance



Results
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5G brings Digital Twins to Life 

● Agent-based models connected to real-time 
sensor data

● Simulations for what-if analysis
● Analyzing massive amounts of data on DOE 

HPC facilities

Simulating 
agent-based 
model with 
real data



Self-driving ESnet optimized for 5G

● Optimized for fast multiple data collection to HPC and delivery for real-time emergency 
control 

● Optimal Edge server: allocate content just 1 hop away for scientists
● Caching at the edge for optimal network performance 
● Optimal Routing gives fasting path between source and destinations
● TCP optimization for 5G
● AI determines prefetching to move needed data closer
● Deliver “bespoke network” for science 

“I want to send 
data to NERSC 
by 5:00pm”

“Ok I’ll reconfigure to 
make that possible”

Scientist

Network



Conclusions: AI and 5G are essential to Self-driving Labs

● New networking challenges in 5G and Beyond will truly transform DOE science
● Quantum will work orthogonal to 5G advances, but merge
● Rise to experimentation in virtual worlds - DOE Metaverse

● Intelligent control with optimal data movement 
● New research needed in 

○ AI data validation - uncertainty, adversarial attacks and faulty data
○ Correctness and testing AI
○ encourage wireless adoption across Science areas 
○ new Science with new data 

● New moving data sources seamlessly integrate into network fabric like human nerves

Our work with the new testbed, self-driving systems, agent-based models and a real 
radiological case study are all the needed elements to push this new frontier
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Thank You
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