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Introduction

Animation from business insider Particle colliders

https://www.businessinsider.com.au/what-happens-inside-a-particle-collider-2015-4
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Picture from arXiv:1411.4085

Significance: metric used in 
collider physics to determine how 
confident we are about our 
claims. 
● 4σ: 1 in 1M chance of being 

a spurious observation
● 5σ: 1 in 3.5M chance of 

being a spurious 

https://arxiv.org/pdf/1411.4085
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Picture from arXiv:1411.4085

“The extraction of a signal from H-> bb 
decays in the WH channel will be very 
difficult at the LHC, even under the most 
optimistic assumptions” - SNOWMASS-
2001-P111

https://arxiv.org/pdf/1411.4085


What I’m talking about
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Detector 
response

Data analysis

Unfolding

Surrogate Anomaly detection

Picture from arXiv:1411.4085

https://arxiv.org/pdf/1411.4085


Surrogate modeling for detector simulation
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▰ Detector simulation is computationally expensive:
▻ Full detector simulation of a particle can take up to a minute and we still need many

billions of particles simulated
▰ For previous LHC runs, detector simulation used around 40% of all computing resources

and may go beyond the available budget for future runs



Surrogate modeling for detector simulation
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▰ At the Large Hadron Collider (LHC), experiments already 
have a WGAN-GP planned to replace part the full 
simulation routine

▰ Fully-connected architecture that leads to orders of 
magnitude faster generation compared to full simulation

▰ 1000s of times faster than the current full simulation

WGAN
Full 
simulation

See also: M. Paganini, L. de Oliveira, 
and B. Nachman, Phys. Rev. D 97, 
014021

http://cds.cern.ch/record/2746032


Surrogate modeling for detector simulation
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▰ Bring modern generative models to improve the 
model fidelity and tackle high dimensional 
datasets

▰ Explore the detector geometry using 3D 
convolutions

▰ Use score-based generative models to simulate 
the detector response

Song, Yang, et al. arXiv preprint arXiv:2011.13456 (2020).

▰ Proof of concept using the Fast 
Calorimeter Simulation Challenge 
2022

▰ 3 datasets available with 368, 
45x12x12= 6480, and 45x32x32= 
46080 dimensions

For a NF approach see also: 
Krause, C. and Shih, D.,arXiv 
preprint, arXiv:2106.05285 (2021)

https://calochallenge.github.io/homepage/
https://calochallenge.github.io/homepage/
https://calochallenge.github.io/homepage/


CaloScore
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Full 
simulation

Generated 
by the 
surrogate

Dataset 
2

Dataset 
3

Mikuni, Vinicius, and Nachman, 
Benjamin. Phys. Rev. D 106 
(2022), 092009.



Detector unfolding
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▰ The opposite problem is how to report physics measurements that are corrected for 
detector effects: 

▰ Also referred to Unfolding or solving an inverse problem or deconvolution
▰ Hard task to accomplish in high dimensional spaces:

▻ Standard methods restricted to 1D or 2D histogramsBenefits
▰ Precision: Multiple dimensions can 

be unfolded simultaneously
▰ Reusability: People using the same 

data can also use the unfolding 
information

▰ Data Preservation: Recast or 
combination of measurements 
becomes trivial for future 
experiments



ML-based unfolding*
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Machine learning is used to overcome these 
limitations in an Expectation-Maximization 
style
2 step iterative approach
▰ Simulated events after detector 

interaction are reweighted to match the 
data

▰ Create a “new simulation” by transforming 
weights to a proper function of the 
generated events

Machine learning is used to derive the 
reweighting functions

* Andreassen et al. PRL 124, 182001 
(2020)



Extracting particle information

12
* V. Mikuni and F. Canelli 2021 Mach. Learn.: Sci. Technol. 2 035027
Wang, Yue, et al. Acm Transactions On Graphics (tog) 38.5 (2019): 1-12.

▰ Particle collisions are described by graphs where particles are nodes
▰ Graph structure naturally incorporate concepts such as varying number of particles and 

non-intrinsic ordering due to quantum mechanics
▰ Nearby particles carry the information on how they decay and radiate, encoded through 

edges
▰ Use a Point Cloud Transformer* model to learn the differences between particles during 

unfolding



Experimental results
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ML-based unfolding results using experimental data are already happening!
▰ Full unfolding procedure carried out with the Perlmutter Supercomputer
▰ Multiple observables are measured and unfolded simultaneously with high 

precision!
▰ Multiple energy regimes are investigated to highlight different physics

H1 Collaboration. H1prelim-22-034

27.5 

GeV 

e+-

920 GeV 

proton

To account for all uncertainties, 
2800 neural networks were trained!

https://www.nersc.gov/systems/perlmutter/
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Picture from: https://www.symmetrymagazine.org/article/december-2013/four-things-you-might-not-know-about-dark-matter

https://www.symmetrymagazine.org/article/december-2013/four-things-you-might-not-know-about-dark-matter


Anomaly detection
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▰ Anomaly detection is often associated to outlier detection
▰ For new physics, a single observation is not enough: an ensemble of 

observations is necessary to provide context

Anomaly! Anomaly!?



Anomaly detection
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▰ A good anomaly detection 
method should be able to 
identify anomalies as well as 
provide context for false 
positives or background events
events misidentified as 
anomalies: False positives



Decorrelated autoencoders
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▰ Autoencoders learns to compress and 
decompress data using background 
events 

▰ Anomalies are often poorly reconstructed, 
yielding a high reconstruction error

R1(x) R2(x)

▰ Train multiple autoencoders such 
that their reconstruction error is 
independent for background events

See also: Kasieczka, G., Mastandrea, R., Mikuni, 
V., Nachman, B., Pettee, M., & Shih, D. (2022). arXiv 
preprint arXiv:2209.06225.



Anomaly detection performance
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No 
anomalies

▰ Number of false positives 
determined using the 
independent reconstruction 
error

▰ In the absence of new 
physics, the algorithm 
reports the correct number 
of observations

▰ Anomalies identified as an 
excess on the number of 
observations translated as a 
Significance or signal-to-
noise ratio

Mikuni, Vinicius, Benjamin Nachman, and David Shih. Physical Review D 105.5 (2022): 055006.

False positive 
rate

Other colors:
datasets with 
0.1% anomalies 
and 99.9%
standard physics 
processes



Conclusions 
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▰ Machine learning unfolding to solve inverse problems:
▻ Able to measure precisely many observables simultaneously
▻ First results using experimental data are out!

▰ Anomaly detection is a new way to look for new 
physics processes

▰ Understanding the strengths and weaknesses of the 
algorithms is an important step to interpret results

▰ Full detector simulation is expensive and not easily scalable
▻ Surrogate models using ML are necessary to keep up with the large 

amount of data collected by experiments
▻ Use score-based generative models for the first time in particle 

physics to enhance simulation fidelity

▰ Modern data analysis methods and machine learning are  a fundamental part of collider physics
▰ In this talk I covered only a small part of a large number of exciting projects and ideas

See more HEP-related developments at 
https://iml-wg.github.io/HEPML-LivingReview/

https://iml-wg.github.io/HEPML-LivingReview/
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THANKS!
Any questions?

vmikuni@lbl.g
ov

vinicius-
mikuni
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BACKUP
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Surrogate model 
for detector 
simulation



Calorimeter shower generation
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Very simple U-NET model used to build the score function
▰ Lots of new developments over the years, adding attention between 

layers, additional skip connections, but kept it simple for this 
application

▰ Conditional information is added to convolutional layers as a bias 



Results

24Dataset 3

Dataset 2

Dataset 1

▰ Deposited energy (sum of 
voxels) vs. the conditional 
energy

▰ Good agreement between full 
simulation and different 
diffusion models

▰ VE shows the same shift 
observed for dataset 3



Results
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Dataset 3

Dataset 2

Full 
simulation

Weird shapes are a 
result of the 
coordinate 
transformation

VP SDE
subVP SDE

VE SDE
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Unfolding



Omnifold
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Reco level

Generator 
level

MC

MCData

Data



Omnifold
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Reco level

Generator 
level

MC

MCData

Data Step 1:
● Train a classifier to separate data from MC

events
● Reweight reco level MC with weights:

W(reco) = 
pData(reco)/pMC(reco) 

Iteration 
1



Omnifold
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Reco level

Generator 
level

MC

MCData

Data Step 2:
● Pull weights from step 1 to generator level 

events
● Train a classifier to separate initial MC at 

gen level from reweighted MC events
● Define a new simulation with weights that 

are a proper function of gen level 
kinematics

MC 
reweighted

W(gen) = pweighted 

MC(gen)/pMC(gen) 

Iteration 
1



Omnifold
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Reco level

Generator 
level

MC

MCData

Data Start again from step 1 using the new simulation
after pushing the weights from step 2
● Guaranteed convergence  to the maximum 

likelihood estimate of the generator-level 
distribution when number of iterations go to 
infinite

● In practice, less than 10 iterations are 
enough to achieve convergence

Iteration 
1



Omnifold
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Reco level

Generator 
level

MC

MCData

Data Start again from step 1 using the new simulation
after pushing the weights from step 2
● Guaranteed convergence to the maximum 

likelihood estimate of the generator-level 
distribution when number of iterations goes 
to infinite

● In practice, less than 10 iterations are 
enough to achieve convergence

Iteration 
N
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Anomaly 
detection



Anomaly detection

33Kasieczka, G., Mastandrea, R., Mikuni, V., Nachman, B., Pettee, 
M., & Shih, D. (2022). arXiv preprint arXiv:2209.06225.

▰ The set of features used 
to search for anomalies 
can also have a big 
impact on the algorithm 
performance, as 
statements regarding 
ps(x) and pb(x) are not 
invariant under change of 
coordinates

Gaussian

CDF

tanh



Online compatibility
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Slides from Maurizio 
Pierini

▰ More than 99% of events 
are rejected due to 
bandwidth restrictions

▰ Given the algorithm’s 
simplicity, it can also be 
deployed directly using 
modern hardware 
implementations such as 
FPGAs

▰ Possibility to identify 
anomalous events and 
store the information for 
further analysis

https://atrium.in2p3.fr/nuxeo/nxfile/default/2c445c94-34a9-4bce-97c7-0847bb139245/blobholder:0/PIERINI_Deep%20Learning%20with%20FPGA.pdf
https://atrium.in2p3.fr/nuxeo/nxfile/default/2c445c94-34a9-4bce-97c7-0847bb139245/blobholder:0/PIERINI_Deep%20Learning%20with%20FPGA.pdf

