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Electronic Structure of Matter and Modern 
Materials Design
• Many-body Schrödinger’s equation 𝐻𝐻Ψ = Ψ𝐸𝐸

PV Solar Cells Energy storage Carbon capture
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Electronic structure theory
Main goal: Given atomic positions 𝑅𝑅𝛼𝛼 𝛼𝛼=1

𝑀𝑀 , Compute the ground state electron 
energy 𝐸𝐸𝑒𝑒( 𝑅𝑅𝛼𝛼 )

Ground state electron wavefunction Ψ𝑒𝑒(𝑟𝑟1,⋯ , 𝑟𝑟𝑁𝑁; 𝑅𝑅𝛼𝛼 )
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Curse of dimensionality

The fundamental laws necessary to the mathematical treatment of 
large parts of physics and the whole of chemistry are thus fully 
known, and the difficult lies only in the fact that application of these 
laws leads to equations that are too complex to be solved.

–P. Dirac, 1929
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Approximation
• Wavefunction methods

• Hartree-Fock
• Configuration interaction
• Coupled cluster
• MP2, MP3 etc.

• Density functional theory (DFT)
• LDA
• GGA
• Perturbation (GW, Bathe-Salpeter)
• Time-dependent DFT

What to compute?
• Energy (binding, adsorption, 

absorption, vacancy, insertion, 
ionization etc.)

• Electron density
• Electron orbitals
• Geometry (atomic structure)
• Vibration (phonons)
• Transition states
• Dynamics
• Other observables (diffusion, electron 

mobility, dipole moment etc.)
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Pople diagram

John Pople,
Nobel Prize in 
Chemistry, 1998
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Density functional theory (DFT): best compromise between 
efficiency and accuracy.  Most widely used electronic structure 
theory for condensed matter systems.
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Density functional theory

[S. Redner, Citation Statistics from 110 Years of Physical Review]
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Density functional theory

[S. Redner, Citation Statistics from 110 Years of Physical Review]
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Kohn-Sham density functional theory

• Efficient: Always solve an equation in 𝑅𝑅3, regardless of the 
number of electrons 𝑁𝑁.

• Accurate: Exact ground state energy for exact 𝑉𝑉𝑥𝑥𝑥𝑥[𝜌𝜌], 
[Hohenberg-Kohn,1964], [Kohn-Sham, 1965]

• Best compromise between efficiency and accuracy.  Most 
widely used electronic structure theory for condensed 
matter systems and molecules

• Nobel Prize in Chemistry, 1998
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Self Consistent Field Iteration

𝐻𝐻[𝜌𝜌𝑖𝑖𝑖𝑖]𝜌𝜌𝑖𝑖𝑖𝑖

𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜

Discretization

EvaluationIteration
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Self Consistent Field Iteration

𝐻𝐻[𝜌𝜌𝑖𝑖𝑖𝑖]𝜌𝜌𝑖𝑖𝑖𝑖

𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜

Discretization

EvaluationIteration

1) Very costly step.
2) Limiting practical calculations 

to hundreds of atoms
3) Almost always treated by 

solving a linear eigenvalue 
problem
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Cubic scaling of KSDFT
• KS orbitals (eigenfunctions) are delocalized 

in the global domain.

• N atoms.  𝑂𝑂(𝑁𝑁) grid points.  𝑂𝑂(𝑁𝑁) KS orbitals.

• Orthogonalization of an 𝑂𝑂 𝑁𝑁 × 𝑂𝑂(𝑁𝑁) matrix ⇒ 𝑂𝑂 𝑁𝑁3

scaling, regardless of what eigensolver is being used.  

• Conclusion: DO NOT directly treat KS orbitals that are 
delocalized in the global domain.
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Evaluation: Alternatives?
• Linear scaling algorithms

• Near-sightedness [Kohn, PRL 1996]
[Benzi-Boito-Razouk, SIAM Rev. 2013]

• Truncation based algorithm: 
hard to balance efficiency and accuracy

• Only applicable to insulators.

[Bowler and Miyazaki, Rep. Prog. Phys 2012]
“…The second challenge is that of metallic systems: there is
no clear route to linear-scaling solution for systems with low or zero 
gaps and extended electronic structure…”

• Difficult task: 
• Accurate and efficient
• Applicable to insulators, semiconductors and metals

Δ𝑉𝑉(𝑟𝑟′)
Δ𝜌𝜌(𝑟𝑟)

𝑟𝑟′ − 𝑟𝑟
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Alterative solution?
Linear scaling methods 

• Truncation (KS orbital, 1-dm).  
Near-sightedness.

• Costly for metals (large 
preconstant)

• Complicated user-interface
(select truncation region)

[Yang, 1991], [Kohn, 1996]. 
Review: [Goedecker, 1999]. 
[Bowler-Miyazaki, 2012].

What we propose

• No truncation. Not based on 
near-sightedness. 

• Applicable to insulator, 
semiconductor and metal.

• Black-box user-inteface.

• Scales at most 𝑂𝑂(𝑁𝑁2). 

• Localized basis and relatively 
small number of basis functions 
per atom.



Outline

PEXSI: Pole EXpansion and Selected Inversion

• Pole Expansion

• Selected Inversion

• How it works in practice

14



PEXSI at work

Disordered graphene 
8192 atoms

Speed up: 127

5703

45
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KSDFT: Matrix point of view

𝜌𝜌 𝑥𝑥 = 2�
𝑖𝑖=1

𝑁𝑁/2

𝜓𝜓𝑖𝑖 𝑥𝑥 2

= 𝜓𝜓1(𝑥𝑥) … 𝜓𝜓𝑁𝑁𝑡𝑡(𝑥𝑥)
𝜒𝜒(𝜀𝜀1 − 𝜇𝜇)

⋱
𝜒𝜒(𝜀𝜀𝑁𝑁𝑡𝑡 − 𝜇𝜇)

𝜓𝜓1(𝑥𝑥)
⋮

𝜓𝜓𝑁𝑁𝑡𝑡(𝑥𝑥)
= 𝜒𝜒(𝐻𝐻 𝜌𝜌 − 𝜇𝜇𝜇𝜇) 𝑥𝑥,𝑥𝑥

• 𝜇𝜇 : Chemical potential such that #{𝜎𝜎 𝐻𝐻 ≤ 𝜇𝜇} = 𝑁𝑁/2

• 𝜒𝜒 : Heaviside function satisfying  𝜒𝜒 𝑥𝑥 = �2, 𝑥𝑥 ≤ 0,
0, 𝑥𝑥 > 0

𝜌𝜌 = diag 𝜒𝜒(𝐻𝐻 𝜌𝜌 − 𝜇𝜇𝜇𝜇)

16



Pole expansion
• [LL, Lu, Ying and E, 2009] 𝑄𝑄 ∼ 𝑂𝑂 log 𝛽𝛽Δ𝐸𝐸

𝜌𝜌 ≈ diag�
𝑖𝑖=1

𝑄𝑄
𝜔𝜔𝑖𝑖

𝐻𝐻 − 𝑧𝑧𝑖𝑖𝐼𝐼

• 𝑧𝑧𝑖𝑖 ,𝜔𝜔𝑖𝑖 ∈ ℂ are complex shifts and complex weights
• Cauchy contour integral technique
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Numerical result
H: Tight binding model on a 2D grid
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Outline

PEXSI: Pole EXpansion and Selected Inversion

• Pole Expansion

• Selected Inversion

• How it works in practice
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Selected inversion

𝜌𝜌 ≈ diag�
𝑖𝑖=1

𝑄𝑄
𝜔𝜔𝑖𝑖

𝐻𝐻 − 𝑧𝑧𝑖𝑖𝐼𝐼

• All the diagonal elements of an inverse matrix.
• 𝐻𝐻 is a sparse matrix, but 𝐻𝐻 − 𝑧𝑧𝑖𝑖𝐼𝐼 −1 is a full matrix.
• Naïve approach: 𝑂𝑂 𝑁𝑁3 .
• Need selected inversion.
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Selected inversion: basic idea
• 𝐿𝐿𝐿𝐿𝐿𝐿𝑇𝑇 factorization

𝐴𝐴 =
𝐴𝐴11 𝐴𝐴21𝑇𝑇

𝐴𝐴21 𝐴̂𝐴22
= 1 0

𝐿𝐿21 𝐼𝐼
𝐴𝐴11 0

0 𝑆𝑆22
1 𝐿𝐿21𝑇𝑇
0 𝐼𝐼

𝐿𝐿21 = 𝐴𝐴21𝐴𝐴11−1, 𝑆𝑆22 = 𝐴̂𝐴22 − 𝐴𝐴21𝐿𝐿21𝑇𝑇

• Inversion

𝐴𝐴−1 = 𝐴𝐴11−1 + 𝐿𝐿21𝑇𝑇 𝑆𝑆22−1𝐿𝐿21 −𝐿𝐿21𝑇𝑇 𝑆𝑆22−1

−𝑆𝑆22−1𝐿𝐿21 𝑆𝑆22−1

Observation:
If 𝐿𝐿21 is sparse, 𝐿𝐿21𝑇𝑇 𝑆𝑆22−1𝐿𝐿21 only require rows and columns 
of 𝑆𝑆22−1 corresponding to the sparsity pattern of 𝐿𝐿21.
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Recursive relation
𝑆𝑆22 =

𝐴𝐴22 𝐴𝐴32𝑇𝑇

𝐴𝐴32 𝐴̂𝐴33

𝐴𝐴 = 1 0
𝐿𝐿21 𝐼𝐼

1 0 0
0 1 0
0 𝐿𝐿32 𝐼𝐼

𝐴𝐴11 0 0
0 𝐴𝐴22 0
0 0 𝐴̂𝐴33

1 0 0
0 1 𝐿𝐿32𝑇𝑇
0 0 𝐼𝐼

1 𝐿𝐿21𝑇𝑇
0 𝐼𝐼

𝐴𝐴−1 =
𝐴𝐴11−1 + 𝐿𝐿21𝑇𝑇 𝑆𝑆22−1𝐿𝐿21 −𝐿𝐿21𝑇𝑇 𝑆𝑆22−1

−𝑆𝑆22−1𝐿𝐿21
𝐴𝐴22−1 + 𝐿𝐿32𝑇𝑇 𝑆𝑆33−1𝐿𝐿32 −𝐿𝐿32𝑇𝑇 𝑆𝑆33−1

−𝑆𝑆33−1𝐿𝐿32 𝑆𝑆33−1
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Selected inversion
• 𝐴𝐴 = 𝐿𝐿𝐿𝐿𝐿𝐿𝑇𝑇: 𝐴𝐴−1 restricted to the non-zero pattern of 𝐿𝐿 is “self-

contained”: Only compute 𝐴𝐴𝑖𝑖𝑖𝑖−1 𝐿𝐿𝑖𝑖𝑖𝑖 ≠ 0 𝑜𝑜𝑜𝑜 𝐿𝐿𝑗𝑗𝑗𝑗 ≠ 0 .

• Exact method with exact arithmetic.

• For KS Hamiltonian discretized by local basis set, the cost of selected 
inversion is 𝑂𝑂(𝑁𝑁) for 1D systems, 𝑂𝑂 𝑁𝑁1.5 for 2D systems, and 𝑂𝑂(𝑁𝑁2)
for 3D systems.

• Combined with pole expansion: At most 𝑂𝑂 𝑁𝑁2 scaling for solving 
Kohn-Sham problem.

• Idea of selected inversion dates back to [Erisman and Tinney, 1975], 
[Takakashi et al 1973]; For electronic structure [LL-Lu-Ying-Car-E, 
2009]; For quantum transport [Li, Darve et al, 2008, 2012]
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SelInv: Numerical results
SelInv: a selected inversion package for general sparse 
symmetric matrix written in FORTRAN.
[LL-Yang-Meza-Lu-Ying-E, 2011]
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Parallel PEXSI
• Distributed memory parallel selected inversion.  Highly 

scalable to 1024~4096 procs. C++ implementation.
[Jacquelin-LL-Yang, submitted]

• Parallel PEXSI: two level parallism:
e.g. 80 poles × 1024 procs per pole = 81920 procs.

• The parallel PEXSI package is integrated with SIESTA, 
one of the most popular electronic structure software 
using atomic orbitals.
[LL-Garcia-Huhs-Yang, JPCM 2014]
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Parallel PEXSI
http://www.pexsi.org
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Outline

PEXSI: Pole EXpansion and Selected Inversion

• Pole Expansion

• Selected Inversion

• How it works in practice

27



Accuracy of the pole expansion

PEXSI

Carbon Nanotube (metallic)

Atomic orbitals 
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Geometry optimization: BNNT
Truncated Boron Nitride Nanotube (BNNT).  504 B atoms, 504 N atoms, 16 H atoms
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DNA

Atomic orbital basis set generated by 
SIESTA [Soler et al, 2002]

Double-zeta polarized basis set.

Number of 
atoms

Equivalent
cells

Matrix 
dimension

715 1 7183
2860 4 28732
11440 16 114928
45760 64 459712

715 atoms (1 cell)

DNA molecule 11440 atoms (16 cells)
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Comparing PEXSI with diagonalization

(Partial) diagonalization routine: pdsyevr in ScaLAPACK [Vömel, 2010]

Parallelization of PEXSI benefited from two-level parallelism: 80 poles used

Speed-up: 66 Speed-up: 298

72.8

1.1

1371

4.6
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Strong and Weak scaling

80 poles used.

quasi-1D system: 𝑂𝑂(𝑁𝑁) scaling

0.16

0.66

2.46

13.03

0.30

1.38

6.17

20.9
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Disordered Graphene

2048 atoms (1x1)

Number of 
atoms

Equivalent
cells

Matrix 
dimension

2048 1 × 1 81,920
8192 2 × 2 327,680
32768 4 × 4 1,310,720

Discretized by the adaptive local 
basis functions.
[LL-Lu-Ying-E, JCP, 2012]

40 basis / atom to get 
1meV/atom accuracy in the 
energy.
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Comparing PEXSI with diagonalization

Speed up: 43 Speed up: 127

(Partial) diagonalization routine: pdsyevr in ScaLAPACK [Vömel, 2010]

Parallelization of PEXSI benefited from two-level parallelism: 80 poles used

5703

45

430

10
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Strong and Weak scaling

474

55

7

243

25

3

80 poles used.

quasi-2D system: 𝑂𝑂(𝑁𝑁1.5) scaling
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Conclusion
• Pole Expansion and Selected Inversion (PEXSI) method for 

KSDFT at large scale.

• Based on the sparsity of Hamiltonian and overlap matrix.  
Require local basis set with small number of basis per atom 
(such as NAO and GTO, not applicable to PW)

• Accurate calculation of density, total energy, free energy and 
force (no truncation) for insulating and metallic systems.

• 𝑂𝑂(𝑁𝑁) for quasi-1D system, 𝑂𝑂(𝑁𝑁1.5) for quasi-2D system, and 
𝑂𝑂(𝑁𝑁2) for 3D bulk systems.

• Black-box: suitable for all codes localized basis set such atomic 
orbitals.
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