A-Z Index | Phone Book | Careers

NERSC Sims Show How Recycled Atoms Boost Plasma Turbulence

XGC1 Code Opens New Doors in Fusion Research

August 7, 2017

Contact: Kathy Kincade, kkincade@lbl.gov, +1 510 495 2124

Screen Shot 2017 08 06 at 11.21.41 AM

Plasma density fluctuation in a tokamak plasma turbulence driven by ion temperature gradient. The green line shows the magnetic separatrix surface that contains the edge plasma pedestal within a few centimeters from it. Image: C.S. Chang, Princeton Plasma Physics Laboratory

Turbulence, the violently unruly disturbance of plasma, can prevent plasma from growing hot enough to fuel fusion reactions. Long a puzzling concern of researchers has been the impact on turbulence of atoms recycled from the walls of tokamaks that confine the plasma. These atoms are neutral, meaning that they have no charge and are thus unaffected by the tokamak’s magnetic field or plasma turbulence, unlike the electrons and ions—or atomic nuclei—in the plasma. Yet experiments have suggested that the neutral atoms may be significantly enhancing the edge plasma turbulence, hence the theoretical interest in their effects.

In the first basic-physics attempt to study the atoms’ impact, physicists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have modeled how the recycled neutrals, which arise when hot plasma strikes a tokamak’s walls, increase turbulence driven by what is called the “ion temperature gradient” (ITG). This gradient is present at the edge of a fusion plasma in tokamaks and represents the transition from the hot core of the plasma to the colder boundary adjacent to the surrounding material surfaces.

Their work represents the first step in exploring the overall conditions created by recycled neutrals. The results, reported in the journal Nuclear Fusion, showed that neutral atoms enhance ITG turbulence in two ways:

  • First, they cool plasma in the pedestal, or transport barrier, at the edge of the plasma and thereby increase the ITG gradient.
  • Next, they reduce the sheared, or differing, rates of plasma rotation. Sheared rotation lessens turbulence and helps stabilize fusion plasmas.

The PPPL team used the XGC1 code—an extreme scale edge gyrokinetic particle code, with the turbulence, background plasma and neutral particle dynamics solved together in multiscale—to achieve the simulation. The study began on the Titan supercomputer at the Oak Ridge Leadership Computing Facility (OLCF) but was then moved to the Edison supercomputer at the National Energy Research Scientific Computing Center (NERSC). Edison was more efficient in solving this problem, according to C.S. Chang, head of the SciDAC Center for Edge Physics Simulation at PPPL who oversaw this research and was a co-author on the Nuclear Fusion paper.

“XGC1 scales almost perfectly to the maximal number of cores on Edison, in both weak and strong scaling,” Chang said.

Simulating plasma turbulence in the edge region is quite difficult, added physicist Daren Stotler, a principal research physicist at PPPL and lead author on the Nuclear Fusion paper. “Development of the XGC1 code enabled us to incorporate basic neutral particle physics into kinetic computer calculations, in multiscale, with microscopic turbulence and macroscale background dynamics. This wasn’t previously possible.”

Going forward, the team plans to compare results of their model with experimental observations, a task that will require more complete simulations that include other turbulence modes. Findings could lead to improved understanding of the transition of plasmas from low confinement to high confinement, or H-mode—the mode in which future tokamaks are expected to operate. Researchers generally consider lower recycling, and hence fewer neutrals, as conducive to H-mode operation.  This work may also lead to a better understanding of the plasma performance in ITER, the international fusion facility under construction in France, in which the neutral recycling may differ from that observed in existing tokamaks.

NERSC and OLCF are both DOE Office of Science User Facilities.

This article is based on resources provided by PPPL.

About Computing Sciences at Berkeley Lab

The Lawrence Berkeley National Laboratory (Berkeley Lab) Computing Sciences organization provides the computing and networking resources and expertise critical to advancing the Department of Energy's research missions: developing new energy sources, improving energy efficiency, developing new materials and increasing our understanding of ourselves, our world and our universe.

ESnet, the Energy Sciences Network, provides the high-bandwidth, reliable connections that link scientists at 40 DOE research sites to each other and to experimental facilities and supercomputing centers around the country. The National Energy Research Scientific Computing Center (NERSC) powers the discoveries of 6,000 scientists at national laboratories and universities, including those at Berkeley Lab's Computational Research Division (CRD). CRD conducts research and development in mathematical modeling and simulation, algorithm design, data storage, management and analysis, computer system architecture and high-performance software implementation. NERSC and ESnet are DOE Office of Science User Facilities.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the DOE’s Office of Science.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.