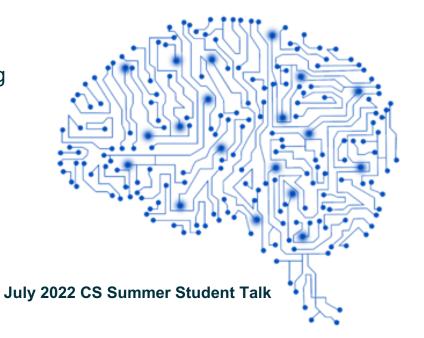


Engineering Self-driving Networks using Deep Learning

Mariam Kiran

2017 DOE Early Career 2021 N2Women Rising Star in Networking

> Scientific Networking Division ESnet, LBNL



Introductions

- 2011 PhD in Computer Science (University of Sheffield, UK)
 - Optimizing HPC jobs in agent-based simulations
- Postdocs in Cloud Computing (University of Oxford, Leeds)
- Royal Society Scientist at Westminster London
- 2016 Joined ESnet, LBNL
- Research Area : AI for Networking Self-driving networks
 - Impacts distributed science workflows
 - Expanding AI from optic networks to wireless and quantum networks
 - Contributions to other science areas:
 - Self-driving lasers
 - Self-driving batteries
 - Self-driving quantum transducers

and more ...

Talk Agenda

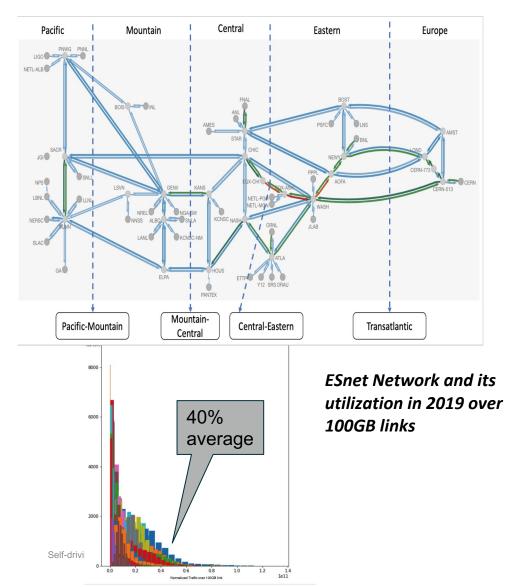
- What is ESnet (Energy Sciences Network)?
- Why Self-driving network?
- Application of LSTMs and GNN in traffic prediction
- Application of Deep Reinforcement Learning on traffic engineering
- Bringing deep learning into 5G networks
 - Classification for network slicing and multi-domain routing
- Acks and Conclusions

ESnet (www.es.net)

DOE's Internet

- >100 engineers and scientists working together to improve data movement across DOE
- Write their own software to control networks e.g. OSCARS, NSI, SENSE to seamlessly 'stitch' multiple networks together
- Network monitoring tools e.g. Bro, perfSONAR, etc
- Innovative networking research e.g. SDN, intent-based networking, automation, etc
- Testbeds for experiments

ESnet: R&E Network the nervous system for Largescale Science



- Networks are built for resilience
- Science traffic is highly variable
- Resources are often underutilized and expensive
- Quality of Network Performance is crucial for Science

Need for **predictability** and infrastructure **adaptability**

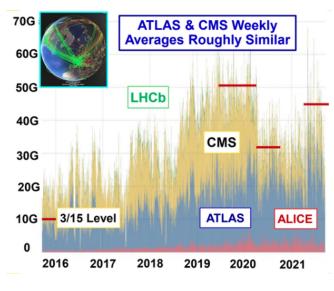
Challenge: how can we <u>optimize and</u> <u>automate</u> network resources (i.e. links) to adapt to variable workloads?

Why Self-Driving Networks?

Why Self-Driving Networks?

Networks are breaking boundaries

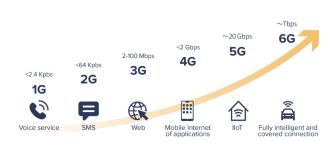
Data rate increases



Neuman, GNA-G 2021

- Upto 58 GBytes/s week avg
- 50% increase/year & 60X/decade
- Within ESnet backbone 62% inc/year

Network beyond walls



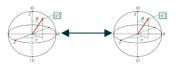
• 10x decrease in latency

- 10x increase throughput
- 100x network performance, traffic capacity
- VR/AR, ability to handle real-time emergency edge intelligence

Edge evolution in fabric

- Increased instruction/s
- Machine learning at edge
- Access to more data

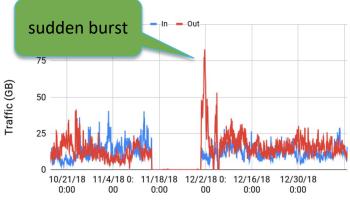
Still untapped...



Challenge 1: Resources are often underutilized

- Traffic is highly variable and 'bursty' (big versus small transfers)
 - Varies time of the day, month, year
- Congestion leads to packet loss
 - Risk to science data
- Networks are capped at 40% for resilient
 - Under-utilized resources

Congested Traffic Animation

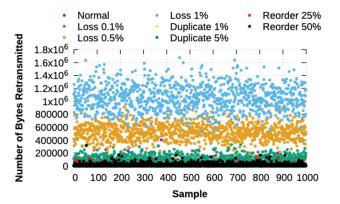


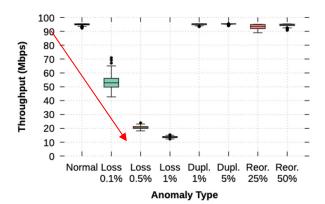
Date

Challenge 2: TCP is Fragile to Congestion

TCP = Transmission Control Protocol

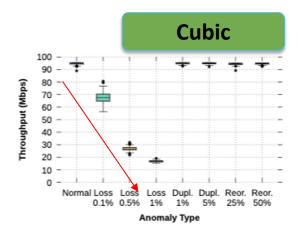
- 95% of Science Traffic uses TCP
- Transfer protocols (TCP) are sensitive to congestion
- Leads to congestion and packet loss

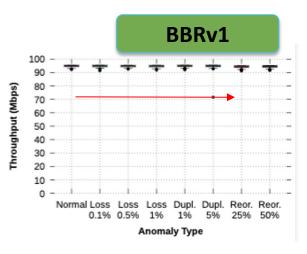




Challenge 3: TCP Congestion Control for Performance

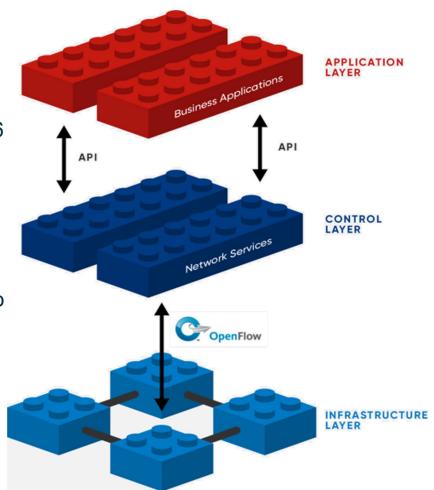
- Each TCP uses complex algorithms to optimize performance (slow down or quicken data sending)
- Examples include video buffering on Youtube, VOIP (zoom) or big file transfers in few hours (Astronomy/physics from LHC)





Software/Hardware Fusion Challenge

- Deep Learning trend
 - Image recognition e.g. Cats 2011
 - Self-playing game e.g. AlphaGo 2016
- Hardware acceleration
 - GPU advances
 - FPGAs
- Industry and Academic Efforts
 - Smart NICs e.g. Barefoot
 - Al @ Control Plane e.g. juniper, cisco
 - Al enabled TCP
 - Traffic patterns

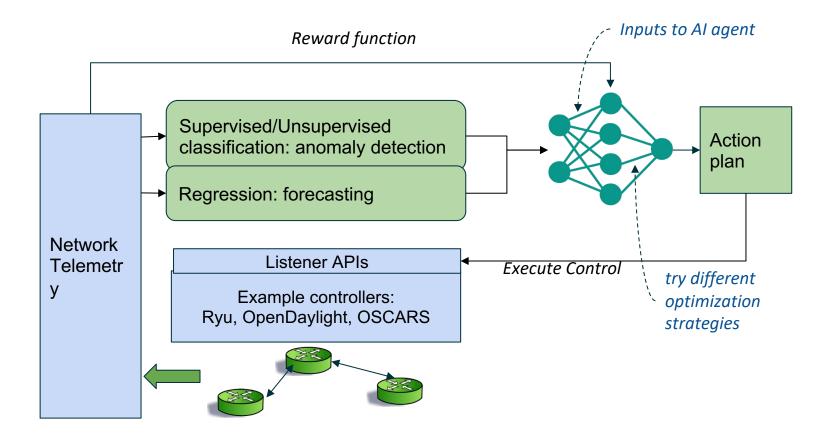


Our Vision: Self-Driving Network

Networks Today	Self-Driving Network
Static Routing Algorithms, manual setups (e.g., shortest route/least hops)	Adaptive Routing (e.g., real-time data for routing decisions)
Leads to congestion and packet loss	Learns to avoid congestion
Transfer protocols (TCP) are sensitive to congestion	congestion free -> loss free network
Inefficient utilization	100% utilization
Reactive fault tolerance	Proactive fault repair

"Networks should learn to drive themselves"*

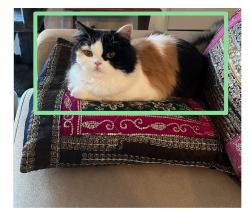
Can do simple actions such as improving availability, attack resilience and dealing with scale. Our argument is AI is needed for mission critical actions.



[*] Why (and How) Networks Should Run Themselves, Feamster, Rexford

Using Deep Learning for Self-Driving

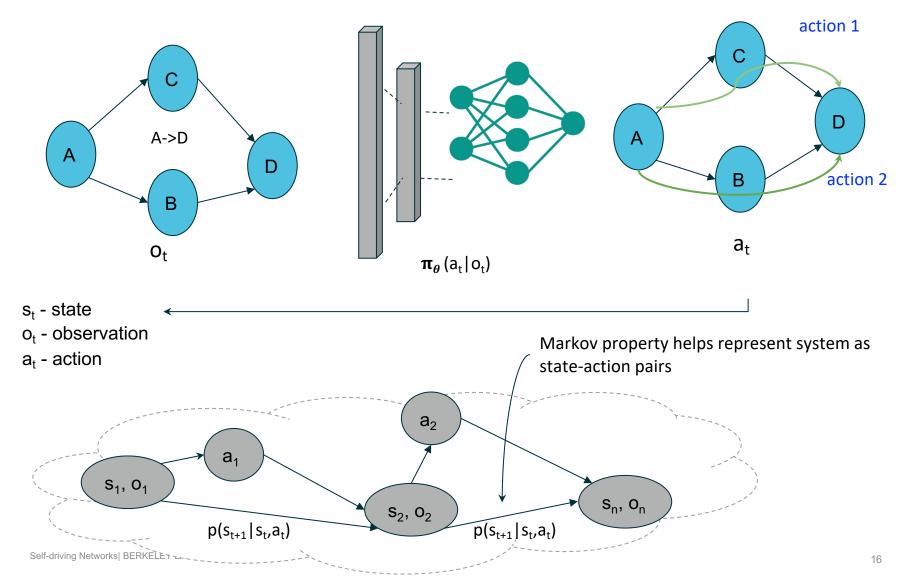
Trained to recognize cats, "object identification"



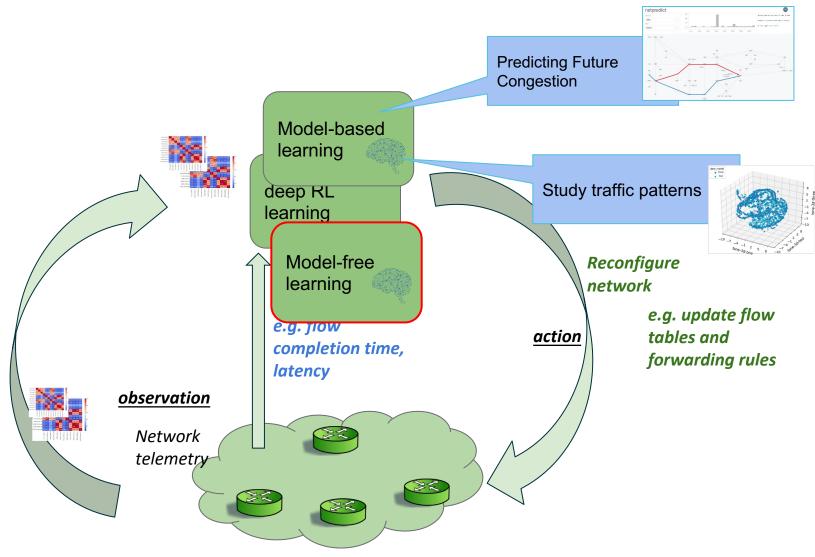
Play games, "Best strategies for winning game"

Deep learning (neural networks - NN) introduces 'data-driven learning' to build bespoke solutions

Data-driven learning: Network as a Markov Decision Process



Representing Network as DL Problem

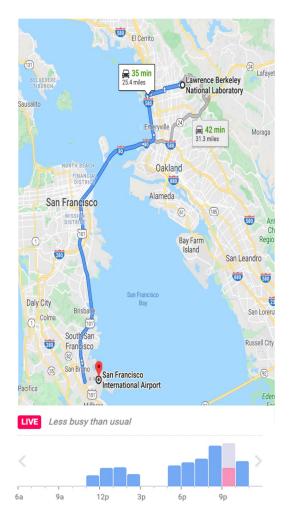


Dynamic Graph Neural Network for Traffic Forecasting in Wide Area Networks, IEEE BigData, 2020 Unsupervised Anomaly Detection in Daily WAN Traffic Patterns, SMC, 2020

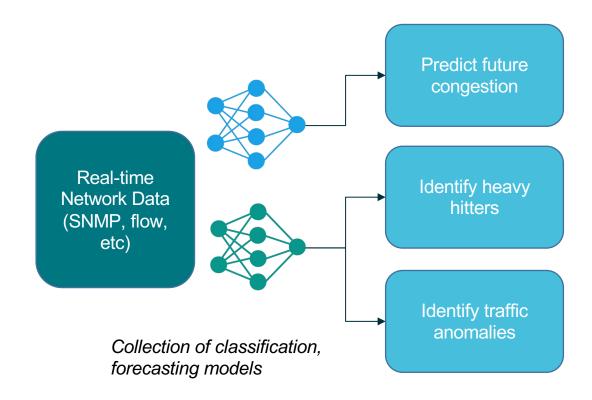
Predicting Network Congestion Before it Happens

Deep Learning Application 1

NetPredict: Predicts Congestion in next 1 week

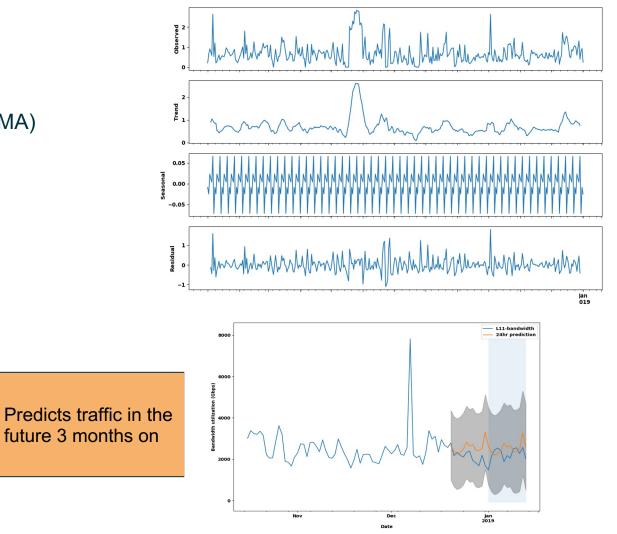


- Real-time data to inform flow directions with SDN tools
- Streaming machine learning backend to predict congestion
- Plan your data transfers to avoid congestion



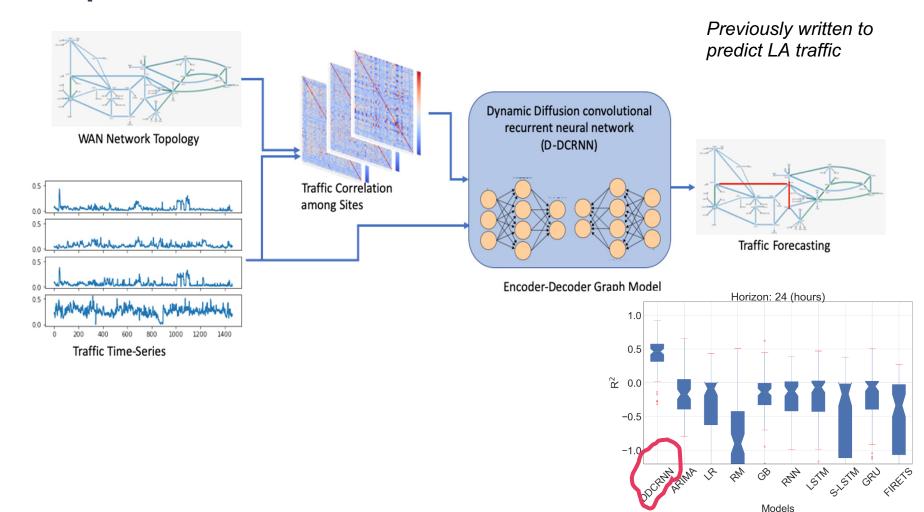
Learning Seasonality in the Traffic across Links

- ARIMA
- Holt-Winters
- SARIMA (Seasonal ARIMA)
- Fourier Transform
- LSTMs (per link)



M Kiran et al. Predicting WAN Traffic Volumes using Fourier and Multivariate SARIMA Approaches, International Journal of Big Data Intelligence, 2020

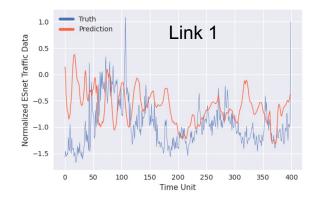
Graph Neural Networks to represent Spatio-Temporal Data

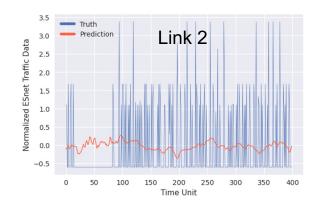


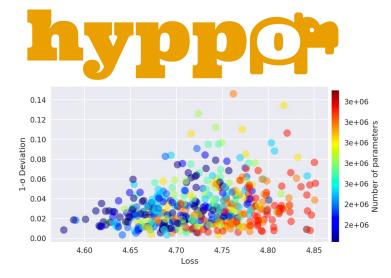
Hyperparameter tuning with GNN

Credit: Juli Mueller, Vincent Dumont

- Large number of parameters to tune
 - Need innovative ways to find the best models
- Learning Window:
 - Tuned for optimum training data length:1 week of data to predict 2 days
- Still some links are better
 - Training data did not contain peaks

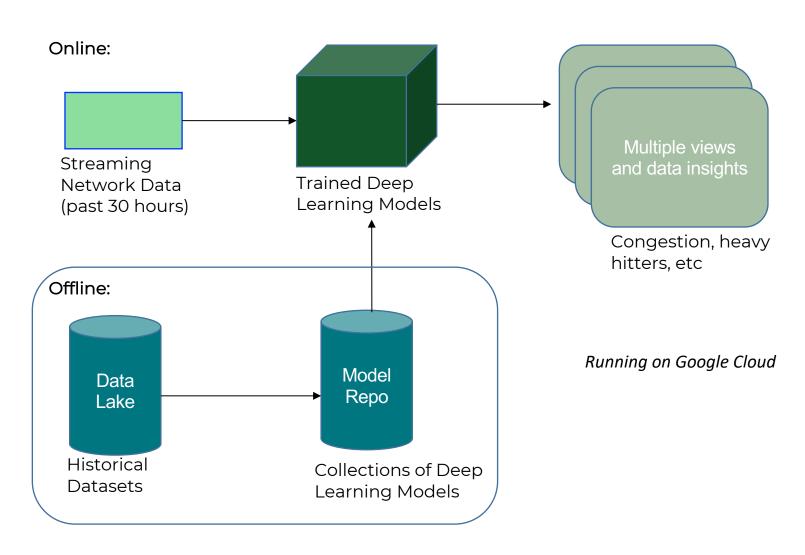






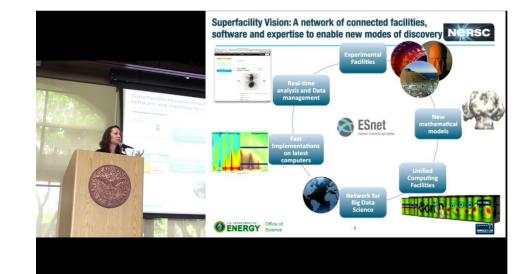
Summer SULI Student: Nishat Tabassum

NetPredict as a Cloud Service



Part of the Superfacility Vision

- Schedule transfers for end-to-end congestion-free performance
- Design better transfer protocols to prevent packet loss
- Optimizing distributed science workflows



Credit: H. Neuman, CalTech (HEP)

CENIC Seattle

SRM

CENIC

CENIC Los Angeles SRM

Caltech

and the state of

SRM

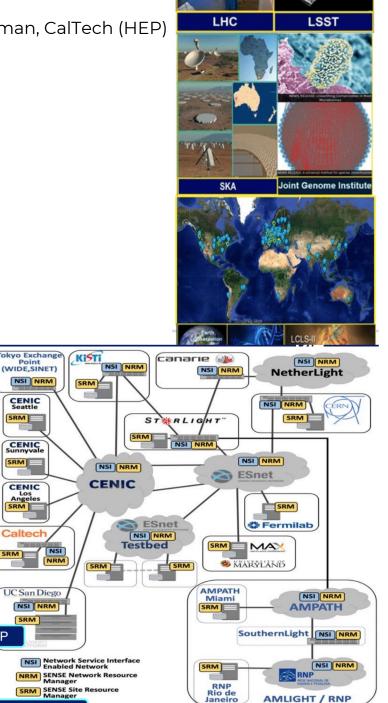
PRP

SRM

SRM

Beyond Network Programmability

- Identifying network bottlenecks to inform better design (Collab. Reservoir Labs)
- Building future internet architectures for data intensive applications
- Thinking Global Science Challenges! •



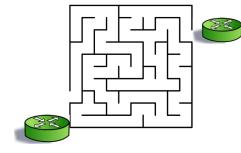
Janeiro

Intelligent Flow Control (building Hecate)

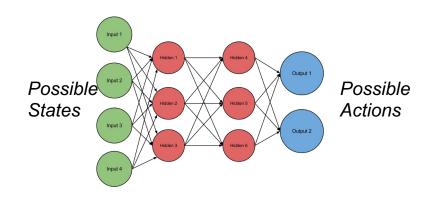
Deep Learning Application 2

Deep Reinforcement Learning for Traffic Engineering

- Multiple ways between source and destination
- Learning the Q function (value function or Bellman equation)



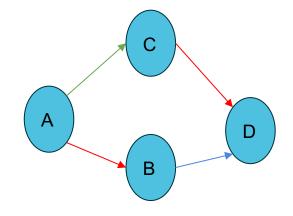
state	action	Q value
state0	Move path1	10
state1	Move path2	2
•••		



What does the AI/DL learn?

State contains:

- current traffic allocated on all links
- current loss, latency, throughput on all links
- is the current traffic elephant or mice flow



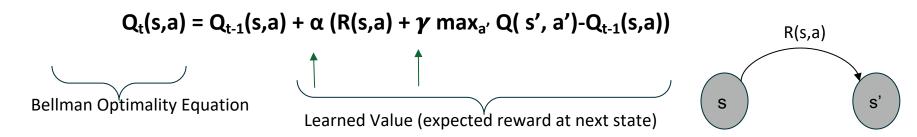
Action:

- allocate incoming flows to all paths
- learn through trial-and error
- collecting reward value (at the end of each episode)

Once trained:

Al knows if "current next conditions are X", I do action "a", will get me the optimum result

Design of the Reward Function

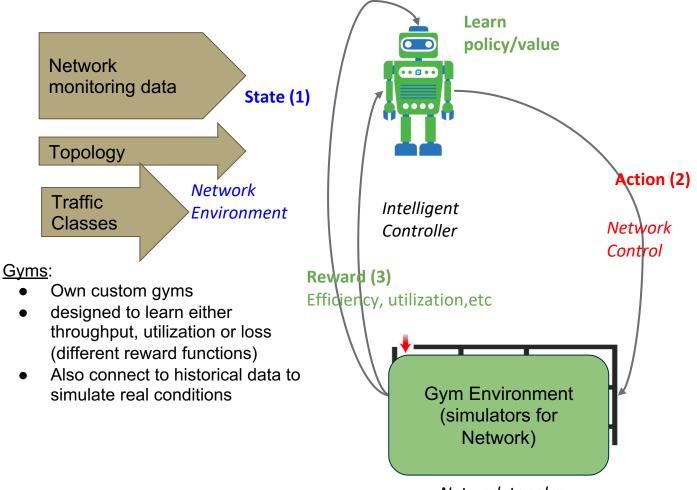


• Hyperparameters: discount factor (γ) - prioritize immediate rewards versus future; learning rate (α)- how quickly it learns and exploration factor (ϵ)

For Network problem:

- optimize for average network utilization
- optimize for latency OR bandwidth OR loss
- optimize for specific traffic class*

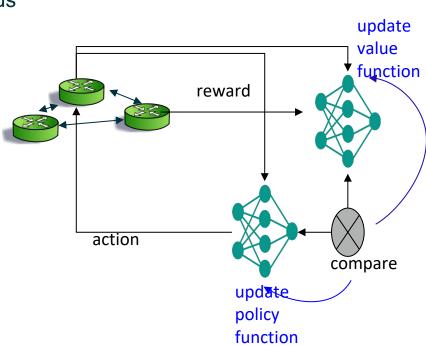
Intelligent Controller (HECATE)



Network topology

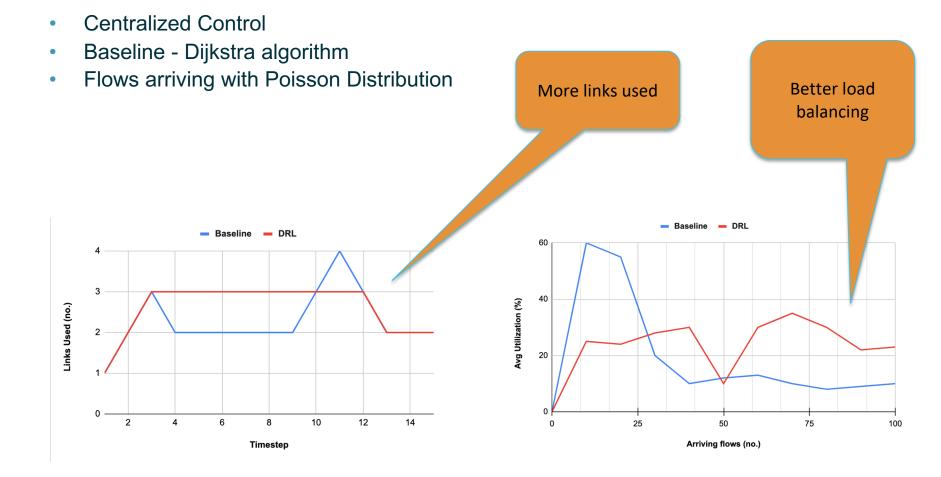
Training the HECATE algorithm

- Actor-critic model: Deep Deterministic Policy Gradient (DDPG) allows to model continuous state and action pairs
- 2 neural networks compare and improve in value and policy learning
- DDPG works well in complex environments (vs DQN)

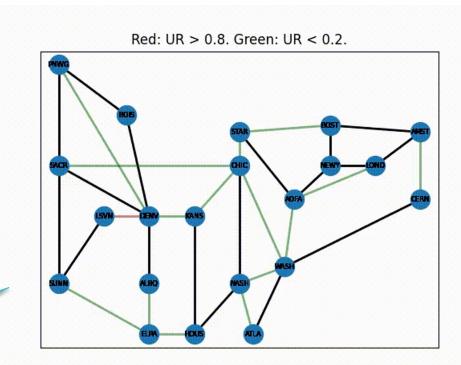


observations

HECATE Overview



HECATE Simulation

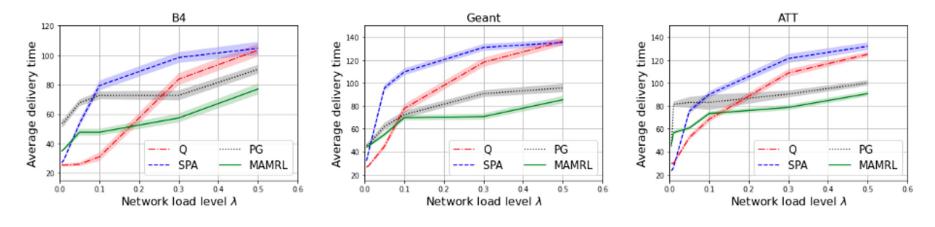


Moves incoming traffic to less used paths

UR: link utilization rate

Improve packet delivery at high loads

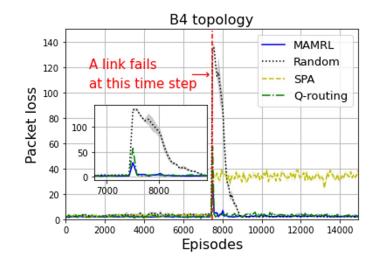
- Improves network performance at high loads
- Leverage traffic patterns into learning to cater to different characteristics
- Can be extended to ESnet traffic engineering protocols



SPA: shortest possible Q: Q-learning PG: policy-gradient MAMRL: multi-agent learning

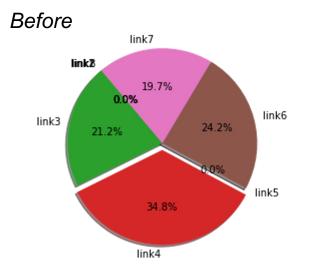
Quick Adaptation

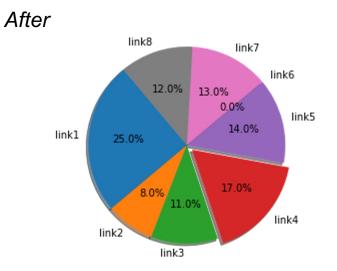
- Decentralized learning shows quicker adaptation to disruptions
 - link failures or
 - network topology changes



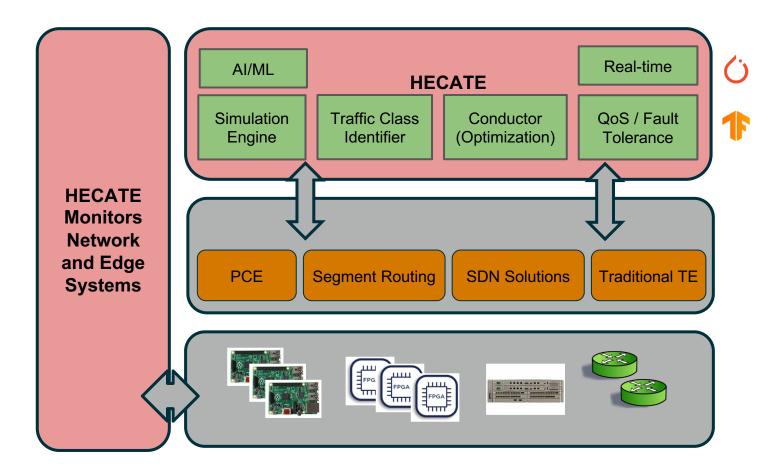
SPA: shortest possible Q: Q-learning PG: policy-gradient MAMRL: multi-agent learning

Supercomputing Networking Research 2021 DEMO



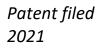


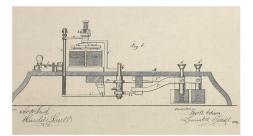
HECATE architectural diagram (high-level)



In-House development - HECATE

- Operating in the data plane
- AI communicates with ESnet network tools
- Adding regression models with DRL





Deep Learning with 5G Networks

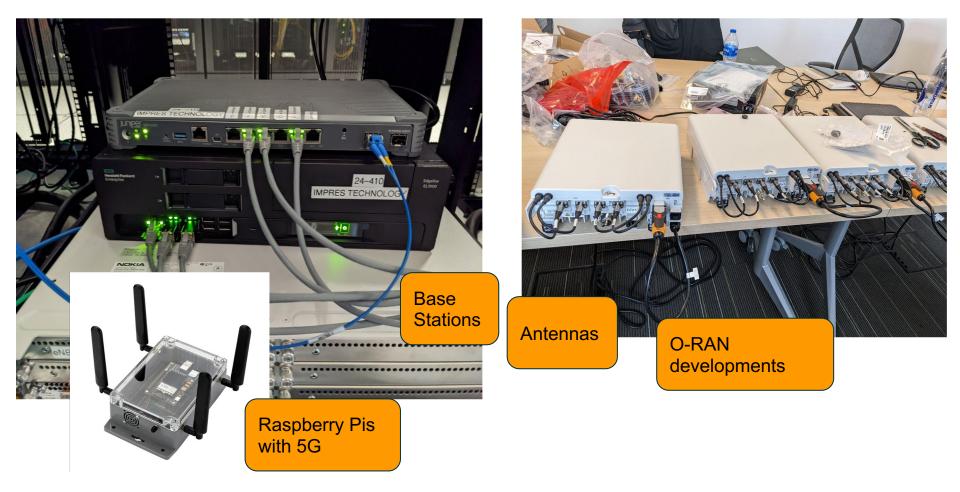
The Future!

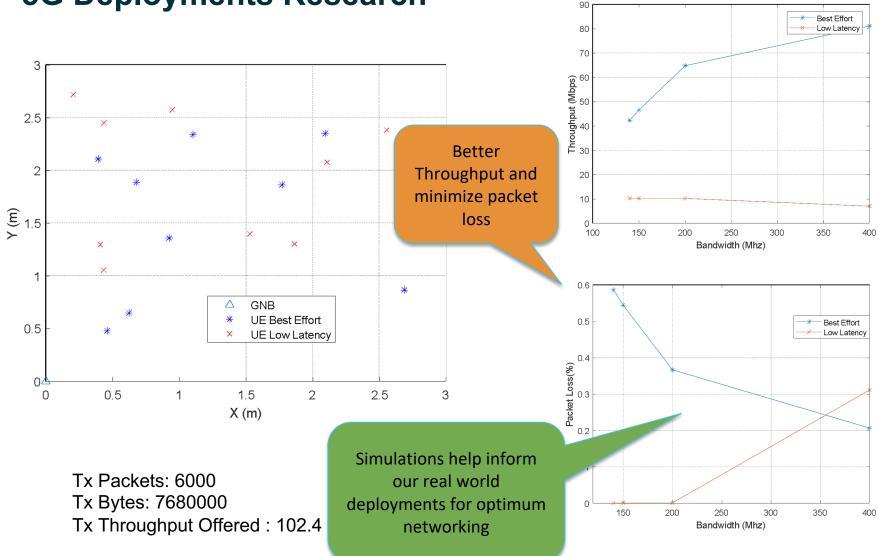
Science Networks are Expanding to Wireless, 5G, 6G and Beyond

- Network statically deployed, unattended sensors need full-time monitoring
- Sensors self-manage and optimize data collection
- Networks with mobile sensors including unmanned aerial systems
- We need continual monitoring of the sites, data is processed in realtime and transmitted to central location for further processing with 5G speed
- Develop novel mesh network topology for flexible inclusion of new sources and use 5G latency targeting off between edge and cloud processing - much like new cells in the body

O-AWR: New Advanced Wireless 5G Testbed (Building 59)

Including CBRS Collab: A.Wiedlea





5G Deployments Research

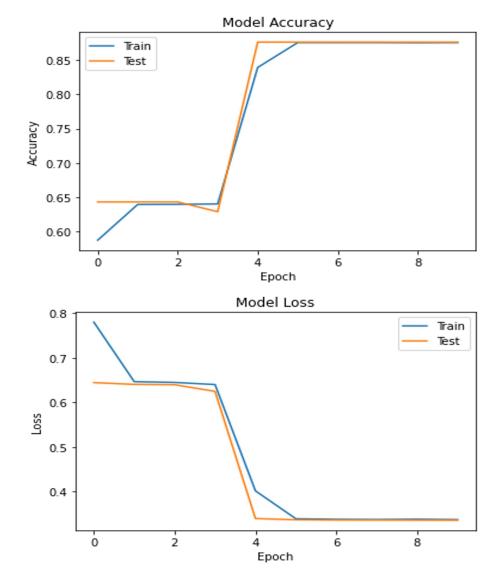
5G Network Slicing

- Network slicing refers to the sharing of network resources to help meet the system's ۲ requirements
- Categories of 5G network slices URLLC, eMBB and mMTC
- Neural Network ۲
 - Model maintains a funnel approach consisting of 5 stacks of CNN layers with activation functions in between
 - Softmax is used as the output layer of choice, providing us the probabilities of the three classes as the output variables
 - Adam was used as the optimizer of choice with a variable learning rate scheduler.

Feature Types
Use Case type
LTE/5G UE Category
Technology Supported
• Day
• Time
• QCI
Packet Loss Rate (Reliability)
Packet Delay Budget (Latency)
Slice Type (Output)

Experimental Results

- The model took 54 secs for each epoch to train on the train data.
- It was able to attain a validation accuracy of 90% during the training phase.
- After training, the model was tested on the test dataset, which resulted in an accuracy of 89%.
- The model was able to correctly predict the best network slice using the device's features.



Conclusions

Future is HyperConnected with many Self-driving Infrastructure!

Conclusions

Future is HyperConnected with many Self-driving Infrastructure!

- New networking challenges in 5G and Beyond will truly transform DOE science
- Rise to experimentation in virtual worlds DOE Metaverse
- Intelligent control with optimal data movement
- New research needed in
 - Al data validation uncertainty, adversarial attacks and faulty data
 - Correctness and testing AI
 - encourage wireless adoption across Science areas
 - new Science with new data
- New moving data sources seamlessly integrate into network fabric like human cells

Our work with the new testbed, self-driving systems, simulations via agent-based models and real DOE use cases will help push this new frontier for networking science!

Call for Papers: SC INDIS 2022

https://scinet.supercomputing.org/community/indis/

- INDIS 2022: 9th Workshop on Innovating the Network for Data-Intensive Science Held in conjunction with SC22 at Dallas, Texas. In cooperation with: IEEE Computing Society and Association for Computing Machinery (ACM)
- (Submissions due Monday, August 15th, 2022 AoE)
- Topics of interest include, but are not limited to:
 [Innovations in Networking Space SDN, AI, monitoring, etc]

Acknowledgements

Teams working across multiple projects

DAPHNE

(Deep Learning for High Performance Networks)

NetPredict, Hecate

- Nishat Tabussam
- Piyush Nayak
- Scott Campbell
- Nick Buraglio

Self-driving 5G network

- Anastasiia Butko
- Ren Cooper
- Claud Wang

Intelligent Wireless Automation

- Andrew Wiedlea
- Xi Yang

Poseidon

- Ewa Deelman (USC)
- Anirban Mandal (RENCI)
- Cong Wang (RENCI)
- George Papadopoulos (USC)
- Prasanna Balaprakash (ANL)

Hyperparameter optimization and uncertainty quantification (HYPPO)

- Julianne Mueller
- Vincent Dumont

<mkiran@es.net>

"Self-Driving"

Systems manage themselves according to an administrator's goals. New components integrate as effortlessly as a new cell establishes itself in the human body. *These ideas are not science fiction, but elements of the grand challenge to create self-managing computing systems.*

Inspired by human nervous system

Kephart, Chess (IBM) 2003

Thank You