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Introductions

• 2011 PhD in Computer Science (University of Sheffield, UK)
– Optimizing HPC jobs in agent-based simulations

• Postdocs in Cloud Computing (University of Oxford, Leeds)
• Royal Society Scientist at Westminster London 
• 2016 Joined ESnet, LBNL
• Research Area : AI for Networking - Self-driving networks

– Impacts distributed science workflows
– Expanding AI from optic networks to wireless and quantum networks 
– Contributions to other science areas: 

• Self-driving lasers
• Self-driving batteries
• Self-driving quantum transducers

and more..
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Talk Agenda

• What is ESnet (Energy Sciences Network)?
• Why Self-driving network?
• Application of LSTMs and GNN in traffic prediction
• Application of Deep Reinforcement Learning on traffic engineering
• Bringing deep learning into 5G networks

– Classification for network slicing and multi-domain routing
• Acks and Conclusions
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ESnet (www.es.net)

• >100 engineers and scientists working together to improve data movement across 
DOE

• Write their own software to control networks e.g. OSCARS, NSI, SENSE to 
seamlessly ‘stitch’ multiple networks together

• Network monitoring tools e.g. Bro, perfSONAR, etc
• Innovative networking research e.g. SDN, intent-based networking, automation, etc
• Testbeds for experiments 
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DOE’s Internet
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ESnet: R&E Network the nervous system for Large-
scale Science

● Networks are built for resilience 
● Science traffic is highly variable 
● Resources are often underutilized 

and expensive
● Quality of Network Performance is 

crucial for Science

Need for predictability and infrastructure 
adaptability

Challenge: how can we optimize and 
automate network resources (i.e. links) to 
adapt to variable workloads? 
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ESnet Network and its 
utilization in 2019 over 
100GB links40% 

average
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Why Self-Driving Networks?
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Why Self-Driving Networks? 
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Networks are breaking boundaries

Data rate increases

Neuman, GNA-G 2021 
● Upto 58 GBytes/s week avg
● 50% increase/year & 60X/decade
● Within ESnet backbone 62% inc/year

● 10x decrease in latency
● 10x increase throughput
● 100x network performance, traffic 

capacity
● VR/AR, ability to handle real-time 

emergency edge intelligence 

Network beyond walls Edge evolution in fabric

● Increased instruction/s
● Machine learning at edge
● Access to more data

Still untapped…
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Challenge 1: Resources are often underutilized

• Traffic is highly variable and ‘bursty’ (big 
versus small transfers)

– Varies time of the day, month, year
• Congestion leads to packet loss 

– Risk to science data
• Networks are capped at 40% for resilient

– Under-utilized resources
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Congested Traffic Animation

sudden burst 
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Challenge 2: TCP is Fragile to Congestion

• 95% of Science Traffic uses TCP
• Transfer protocols (TCP) are sensitive to congestion
• Leads to congestion and packet loss
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TCP = Transmission Control Protocol
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Challenge 3: TCP Congestion Control for Performance

• Each TCP uses complex algorithms to optimize performance (slow down or quicken 
data sending)

• Examples include video buffering on Youtube, VOIP (zoom) or big file transfers in 
few hours (Astronomy/physics from LHC)
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Cubic BBRv1
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Software/Hardware Fusion Challenge

• Deep Learning trend 
– Image recognition e.g. Cats 2011
– Self-playing game e.g. AlphaGo 2016

• Hardware acceleration
– GPU advances 
– FPGAs 

• Industry and Academic Efforts
– Smart NICs e.g. Barefoot
– AI @ Control Plane e.g. juniper, cisco
– AI enabled TCP 
– Traffic patterns  
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Our Vision: Self-Driving Network
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Networks Today Self-Driving Network

Static Routing Algorithms, manual setups 
(e.g., shortest route/least hops)

Adaptive Routing (e.g., real-time data for 
routing decisions)

Leads to congestion and packet loss Learns to avoid congestion

Transfer protocols (TCP) are sensitive to 
congestion

congestion free -> loss free network

Inefficient utilization 100% utilization

Reactive fault tolerance Proactive fault repair
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“Networks should learn to drive themselves”*
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Can do simple actions such as improving availability, attack resilience and dealing with 
scale. Our argument is AI is needed for mission critical actions.

[*] Why (and How) Networks Should Run Themselves, 
Feamster, Rexford

Example controllers:
Ryu, OpenDaylight, OSCARS

Listener APIs

Supervised/Unsupervised 
classification: anomaly detection

Regression: forecasting

Action 
plan

Network 
Telemetr
y

Execute Control

Reward function Inputs to AI agent

try different 
optimization 
strategies
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Using Deep Learning for Self-
Driving
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Trained to recognize cats, 
“object identification” 

Play games, “Best strategies for 
winning game”

Deep learning (neural networks - NN) 
introduces ‘data-driven learning’ to build 

bespoke solutions
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Data-driven learning: Network as a Markov Decision 
Process
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st - state
ot - observation
at - action

A

C

B

D

ot

A

C

B

D

at
𝛑𝜽 (at|ot)

s1, o1
a1

s2, o2

a2

p(st+1|st,at)
sn, on

p(st+1|st,at)

Markov property helps represent system as 
state-action pairs

action 1

action 2

e.g. 4-node network

A->D
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Representing Network as DL Problem
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deep RL 
learning

action

Network 
telemetry

reward

Reconfigure 
network

Training Loop

e.g. update flow 
tables and 
forwarding rules

e.g. flow 
completion time, 
latency

observation

Model-based 
learning

Model-free 
learning

Predicting Future 
Congestion 

Study traffic patterns

Dynamic Graph Neural Network for Traffic Forecasting in Wide Area Networks, IEEE BigData, 2020
Unsupervised Anomaly Detection in Daily WAN Traffic Patterns, SMC, 2020
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Predicting Network Congestion 
Before it Happens

Deep Learning Application 1
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NetPredict: Predicts Congestion in next 1 week

• Real-time data to inform flow directions with SDN tools
• Streaming machine learning backend to predict congestion 
• Plan your data transfers to avoid congestion 
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Real-time 
Network Data 
(SNMP, flow, 

etc)

Predict future 
congestion 

Identify heavy 
hitters 

Identify traffic 
anomalies

Collection of classification, 
forecasting models
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Learning Seasonality in the Traffic across Links

• ARIMA
• Holt-Winters
• SARIMA (Seasonal ARIMA)
• Fourier Transform
• LSTMs (per link)
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Predicts traffic in the 
future 3 months on

M Kiran et al. Predicting WAN Traffic Volumes using Fourier and Multivariate SARIMA Approaches, 
International Journal of Big Data Intelligence, 2020 
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Graph Neural Networks to represent Spatio-
Temporal Data 

21
T. Mallick et al. "Dynamic Graph Neural Network for Traffic Forecasting in Wide Area Networks," in 2020 
IEEE International Conference on Big Data (Big Data).

Previously written to 
predict LA traffic
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Hyperparameter tuning with GNN

• Large number of parameters to tune
– Need innovative ways to find the best 

models
• Learning Window:

– Tuned for optimum training data length:1 
week of data to predict 2 days

• Still some links are better
– Training data did not contain peaks 

22

Link 1 Link 2

Credit: Juli Mueller, 
Vincent Dumont
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NetPredict as a Cloud Service
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Model 
Repo

Data 
Lake

Streaming 
Network Data
(past 30 hours)

Trained Deep 
Learning Models

Multiple views 
and data insights

Online:

Offline:

Historical 
Datasets

Collections of Deep 
Learning Models

Congestion, heavy 
hitters, etc

Running on Google Cloud

Summer SULI Student:
Nishat Tabassum
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Part of the Superfacility Vision 

• Schedule transfers for end-to-end 
congestion-free performance

• Design better transfer protocols to 
prevent packet loss

• Optimizing distributed science 
workflows

25
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Beyond Network Programmability 

• Identifying network bottlenecks to inform 
better design (Collab. Reservoir Labs)

• Building future internet architectures for 
data intensive applications

• Thinking Global Science Challenges!

26

Credit: H. Neuman, CalTech (HEP)
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Intelligent Flow Control
(building Hecate)

Deep Learning Application 2

27
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Deep Reinforcement Learning for Traffic Engineering

• Multiple ways between source and destination
• Learning the Q function (value function or Bellman equation)

28

state action Q value

state0 Move path1 10

state1 Move path2 2

… … ..

… .. ..

Possible 
Actions

Possible 
States
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What does the AI/DL learn?

State contains:

• current traffic allocated on all links
• current loss, latency, throughput on all links
• is the current traffic elephant or mice flow

Action:

• allocate incoming flows to all paths 
• learn through trial-and error
• collecting reward value (at the end of each episode)

Once trained:

AI knows if “current next conditions are X”, I do action “a”, will get me the optimum result

29

A

C

B

D
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Design of the Reward Function

• Hyperparameters: discount factor (𝜸) - prioritize immediate rewards versus future; 
learning rate (α)- how quickly it learns and exploration factor (𝝐)

For Network problem:
• optimize for average network utilization
• optimize for latency OR bandwidth OR loss
• optimize for specific traffic class*

30

Bellman Optimality Equation
Learned Value (expected reward at next state)

s s’

R(s,a)Qt(s,a) = Qt-1(s,a) + α (R(s,a) + 𝜸 maxa’ Q( s’, a’)-Qt-1(s,a))
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Intelligent Controller (HECATE)

31

Network topology

Intelligent 
Controller

State (1)

Action (2)

Reward (3) 
Efficiency, utilization,etc

Learn 
policy/value

Network 
monitoring data

Topology

Gym Environment 
(simulators for 

Network)

Network 
Environment

Network 
Control

Gyms:
● Own custom gyms
● designed to learn either 

throughput, utilization or loss 
(different reward functions)

● Also connect to historical data to 
simulate real conditions 

Traffic 
Classes
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Training the HECATE algorithm

• Actor-critic model: Deep Deterministic Policy 
Gradient (DDPG) allows to model continuous 
state and action pairs

• 2 neural networks compare and improve in 
value and policy learning

• DDPG works well in complex environments 
(vs DQN)

32

observations

action

reward

compare

update 
value 
function

update 
policy 
function
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HECATE Overview

• Centralized Control
• Baseline - Dijkstra algorithm 
• Flows arriving with Poisson Distribution

33

More links used Better load 
balancing
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HECATE Simulation

34

UR: link utilization rate

Moves incoming traffic to 
less used paths
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Improve packet delivery at high loads

• Improves network performance at high loads 
• Leverage traffic patterns into learning to cater to different characteristics
• Can be extended to ESnet traffic engineering protocols

35

SPA: shortest possible 
Q: Q-learning
PG: policy-gradient
MAMRL: multi-agent learning

MAMRL: Exploiting Multi-agent Meta Reinforcement Learning in WAN Traffic Engineering, arxiv, 2021
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Quick Adaptation

• Decentralized learning shows quicker adaptation to disruptions
– link failures or 
– network topology changes

36

SPA: shortest possible 
Q: Q-learning
PG: policy-gradient
MAMRL: multi-agent learning

MAMRL: Exploiting Multi-agent Meta Reinforcement Learning in WAN Traffic Engineering, arxiv, 2021
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Supercomputing Networking Research 2021 DEMO

37MAMRL: Exploiting Multi-agent Meta Reinforcement Learning in WAN Traffic Engineering, arxiv, 2021

Before                                                                       After
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HECATE architectural diagram (high-level)

HECATE 

PCE

HECATE 
Monitors
Network 
and Edge 
Systems SDN SolutionsSegment Routing

QoS / Fault 
Tolerance

AI/ML

Conductor
(Optimization)

Traffic Class 
Identifier

Simulation 
Engine

Traditional TE

Real-time

38



In-House development - HECATE

• Operating in the data plane
• AI communicates with ESnet network tools 
• Adding regression models with DRL

Patent filed 
2021

39
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Deep Learning with 5G Networks

The Future!

40



Science Networks are Expanding to Wireless, 5G, 6G and Beyond

41

• Network statically deployed, unattended sensors need full-time 
monitoring

• Sensors self-manage and optimize data collection
• Networks with mobile sensors including unmanned aerial systems
• We need continual monitoring of the sites, data is processed in real-

time and transmitted to central location for further processing with 5G 
speed

• Develop novel mesh network topology for flexible inclusion of new 
sources and use 5G latency targeting off between edge and cloud 
processing - much like new cells in the body



𝚹-AWR: New Advanced Wireless 5G Testbed
(Building 59) 

Including CBRS 
Collab: A.Wiedlea

Raspberry Pis 
with 5G

Antennas

Base 
Stations

42

O-RAN 
developments
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Tx Packets: 6000
Tx Bytes: 7680000
Tx Throughput Offered : 102.4 Mbps

5G Deployments Research

Better 
Throughput and 
minimize packet 

loss

Credit: Qun Wang (Claud)

Simulations help inform 
our real world 

deployments for optimum 
networking



Self-Driving Networks | BERKELEY LAB 44

5G Network Slicing
Credit: Summer Student 
Piyush Nayak

• Network slicing refers to the sharing of network resources to help meet the system’s 
requirements

• Categories of 5G network slices - URLLC, eMBB and mMTC

Feature Types

● Use Case type

● LTE/5G UE Category

● Technology Supported

● Day

● Time

● QCI

● Packet Loss Rate (Reliability)

● Packet Delay Budget (Latency)

● Slice Type (Output)

• Neural Network
– Model maintains a funnel approach 

consisting of 5 stacks of CNN layers 
with activation functions in between

– Softmax is used as the output layer 
of choice, providing us the 
probabilities of the three classes as 
the output variables

– Adam was used as the optimizer of 
choice with a variable learning rate 
scheduler.
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Experimental Results

• The model took 54 secs for each epoch 
to train on the train data.

• It was able to attain a validation accuracy 
of 90% during the training phase.

• After training, the model was tested on 
the test dataset, which resulted in an 
accuracy of 89%.

• The model was able to correctly predict 
the best network slice using the device’s 
features.
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Conclusions

46

Future is HyperConnected with many Self-driving Infrastructure!
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Conclusions 

• New networking challenges in 5G and Beyond will truly transform DOE science
• Rise to experimentation in virtual worlds - DOE Metaverse
• Intelligent control with optimal data movement 
• New research needed in 

– AI data validation - uncertainty, adversarial attacks and faulty data
– Correctness and testing AI
– encourage wireless adoption across Science areas 
– new Science with new data 

• New moving data sources seamlessly integrate into network fabric like human cells

Our work with the new testbed, self-driving systems, simulations via agent-based 
models and real DOE use cases will help push this new frontier for networking 
science!

47

Future is HyperConnected with many Self-driving Infrastructure!
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Call for Papers: SC INDIS 2022

• INDIS 2022: 9th Workshop on Innovating the Network for Data-Intensive Science

Held in conjunction with SC22 at Dallas, Texas. In cooperation with: IEEE 
Computing Society and Association for Computing Machinery (ACM)

• (Submissions due Monday, August 15th, 2022 AoE)

• Topics of interest include, but are not limited to:

[Innovations in Networking Space - SDN, AI, monitoring, etc]

48

https://scinet.supercomputing.org/community/indis/
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Systems manage themselves according to 
an administrator’s goals. New components 
integrate as effortlessly as a new cell 
establishes itself in the human body. 
These ideas are not science fiction, but 
elements of the grand challenge to create 
self-managing computing systems.

- Kephart, Chess (IBM) 2003Inspired by human 
nervous system

“Self-Driving”
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Thank You
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