Accelerating Genomics Workflows at NERSC

Nick Tyler, NESAP for Data Postdoc Data Science Engagement Group July 26, 2022

NESAP for Data Postdoc

- Working with DOE Joint Genome Institute
- JAWS (JGI Analysis Workflow Service)
 - Runs users genomics workflows across multiple HPC sites
 - Handles data movement with Globus
 - Uses Cromwell to manage workflows
 - Workflow Description Language (WDL)
 - Language used in bioinformatics
 - Parallelism with scatters
- What I've been working on
 - Implement performance monitoring for workflows
 - Helped transition to HTCondor as execution backend
 - Beginning to transition to Perlmutter

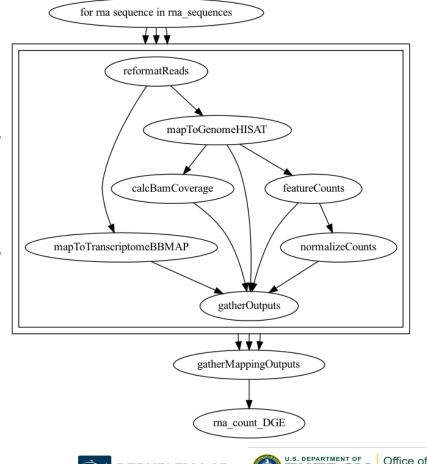
2

JAWS Workflows

Workflow tasks are defined in WDL

- Describes inputs and parameters
- Command section
 - bash script
 - run inside of a container
- $_{\circ}$ Define outputs of successful task
- Request for compute resources
- Inputs are defined in JSON file
 - Same workflow with different data
 - Easy to read and write
 - Automated creation
 - Look for new files in a folder
 - Based on database of data

```
task mapToGenomeHISAT {
   File read1_fastq
   File read2_fastq
   Boolean isSingleEnd
   File genome_index
   String lib_name
   Int n_threads=8
   String run_time
   String reads_input_flag = if(isSingleEnd) then "-U ${read1_fasta}" else "
   command {
     set -euo pipefail
     cp ${genome_index} .
     tar -xvzf genome_index_files.tar.gz
     hisat2 -p ${n_threads} -k 1 -x genome_index_files/genome_ref ${reads_inp
     samtools index ${lib_name}_hits.bam
     samtools flagstat ${lib_name}_hits.bam > ${lib_name}_map_flag_stats.txt
     samtools depth -q 0 -Q 0 ${lib_name}_hits.bam | pigz > ${lib_name}_hits
   output {
       File hits_bam = "${lib_name}_hits.bam"
       File hits_bam_index = "${lib_name}_hits.bam.bai"
       File flag_statsfile = "${lib_name}_map_flag_stats.txt"
       File hits_depth = "${lib_name}_hits.bam.depth.gz"
   runtime {
       docker: "danielapeterson/hisat2_samtools:2.2.1"
       time: run time
       memory: "5G"
       cpu: n_threads
       continueOnReturnCode: true
```


Office of

Science

JAWS Workflows

- Real workflows are complicated
 - Same steps for multiple files
 - Merge outputs of different programs
 - Conditions on some steps
 - Some parts can be run in parallel
 - Collect outputs for entire run
 - Tasks may need different resources
- Cromwell
 - Workflow engine handles DAG
 - Directed acyclic graph
 - Communicate to compute backend
 - HTCondor

g Science Solutions to the World

Science

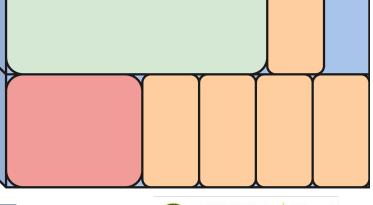
HTCondor Scheduler

- Different type of scheduler from Slurm
 - Designed for high throughput workloads
 - Handles many jobs at once
 - Smaller resource requests then a full node
 - Distributed across different sites
 - Can break up a node into smaller compute "slots"
 - Reuse allocation as much as possible
 - Many users can share the same allocation
- Backbone of the Open Science Pool
 - Project to allow outside access to compute resources
 - Free to US-affiliated research projects and groups
 - Back scheduling on many HPC systems so there is no idle time

6

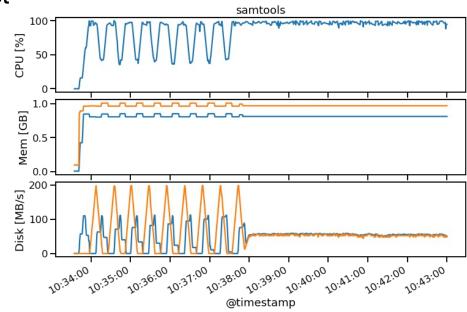
Used heavily by HEP/NP

Efficient Use of Resources


- Use HTCondor to create allocation for JAWS
 - WDL runtime section is used to create condor job
 - Fit as many tasks as possible on a node
 - Many workflows can run on a node simultaneously

7

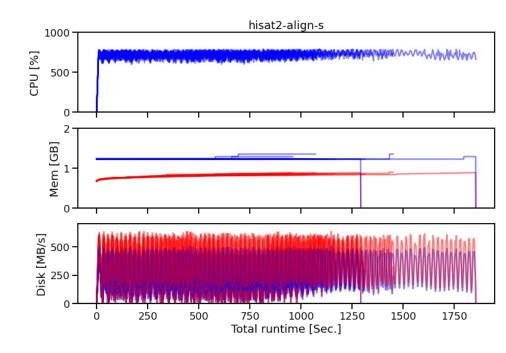
- o No queue wait time!
- Managing the pool
 - Checks Slurm and HTCondor queue
 - Increase pool by requesting node
 - sbatch
 - Decrease pool when nodes are idle
 - scancel
 - Choose the correct node
 - Large memory nodes, exvivo
 - 1.5TB ram



Office of Science

Helping JAWS Users Efficiency

- Want our users to request the correct resources
 - Compare usage with WDL runtime
 Pack more jobs onto a single node
 Increase throughput of jobs
- Developers can optimize code
- Tracking performance over multiple sites
 - Insights into a system performance
 - Some workloads might work better at one site over another


Performance Monitoring

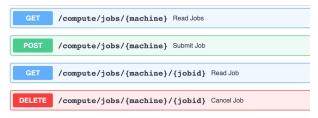
Pagurus

- o github.com/tylern4/pagurus
- Site agnostic monitoring tool

Track individual tasks on a node Map data back to the workflow Get individual programs in task

- Look at usage over multiple runs
- Easy to setup and install
 - Install with pip
 - Uses python psutil library
 - ps (process status) command

9


Ongoing Work

- Add new sites to JAWS
 - Perlmutter
 - Larger CPU nodes, more memory
 - Allow users to request GPUs
 - JGI compute
 - New system at LabIT
 - Dedicated resource for JGI
- Next steps in my work
 - Current system relies on workflow nodes
 - Runs HTCondor, Cromwell, JAWS
 - Interacts with Slurm
 - Move services to Spin
 - Connect with SuperFacility API

NERSC SuperFacility API 120 OASS Applv1.20panapi.json
A programmatic way to access resources at NERSC
For information on how to authenticate and use the api, please see the documentation
Terms of service NERSC Contacts - Website
compute Run commands and manage batch jobs on NERSC compute resource

