NERSC: Scientific Discovery through Computation with High-Performance Computing

Presentation for CSSS Program

Rebecca Hartman-Baker, PhD User Engagement Group Lead Charles Lively III, PhD Science Engagement Engineer June 8, 2023

Introductions - Rebecca

- User Engagement Group Lead, NERSC
- World-famous violinist*
- Enthusiastic picker of fruits
- Mom to Vinny (16) & Elena (8)
- Kentucky native, honorary Aussie
- Algorithm enthusiast

Rebecca Hartman-Baker

• PhD, Computer Science, University of Illinois at Urbana-Champaign

*Slight exaggeration; I have played publicly in 3 countries on 2 continents

Office of

Introductions - Charles

- Science Engagement Engineer, NERSC
- Husband, son, brother, uncle, godfather
- Fur Daddy to Bella and Monte
- PhD, Computer Engineering, Texas A&M University
- Co-founded 2 Start-ups and served as Technical Advisor/Mentor for over 20 start-ups
- Theoretical Physicist in another life
- Avid Peloton rider

Charles Lively

ICE Breaker

4

The Plot

- What is NERSC?
- Science and NERSC's mission
- What is High-Performance Computing?
- What is a Supercomputer?
- The User Engagement Group (UEG)
- Future Challenges in HPC
- Career Paths at NERSC/LBL

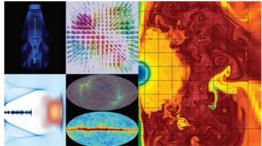
What is NERSC?

National Energy Research Scientific Computing Center

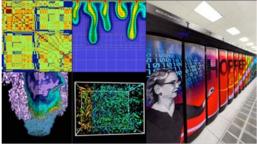
- NERSC is a national supercomputer center funded by the U.S. Department of Energy Office of Science (SC)
 - Supports SC research mission
 - Part of Berkeley Lab
- If you are a researcher with funding from SC, you can use NERSC
 - Other researchers can apply if research is in the SC mission
- NERSC supports 9,000 users, 800 projects
 - From all 50 states + international; 65% from universities
 - Hundreds of users log on each day

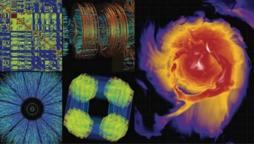
NERSC is the Production HPC & Data Facility for DOE Office of

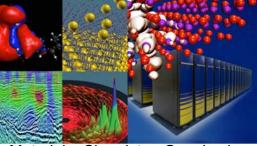
Science Research

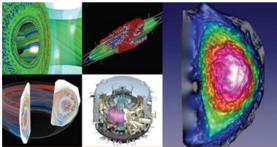


Office of Science


Largest funder of physical science research in U.S.


Bio Energy, Environment


Particle Physics, Astrophysics


Computing

Nuclear Physics

Materials, Chemistry, Geophysics

Fusion Energy, Plasma Physics

8

Office of Science **NERSC: Science First!**

NERSC's mission is to accelerate scientific discovery

at the Department of Energy (DOE) Office of Science

through high-performance computing and data analysis.

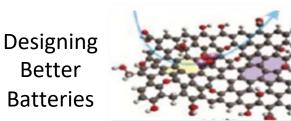
What is Science?

What is Science?

- Science is a systematic and organized approach to acquiring knowledge and understanding the natural world.
- It involves formulating questions, developing hypotheses, conducting experiments or observations, and analyzing data to draw conclusions.
- Science relies on evidence-based reasoning and follows established methods and principles.
- It aims to explain phenomena, predict outcomes, and improve our understanding of the universe.

In Your Mind?

- What does science mean to you?
- What is important about science?



nice or cience

We use High-Performance Computing


... to solve scientific computational problems that are either too large for standard computers or would take them too long.

Proteins Work

High-Performance Computing

High-Performance Computing...

- implies parallel computing
- In parallel computing, scientists divide a big task into smaller ones
- "Divide and conquer"

For example, to simulate the behavior of Earth's atmosphere, you can divide it into zones and let each processor calculate what happens in each.

From time to time each processor has to send the results of its calculation to its neighbors.

Office of

Distributed-Memory Systems

This maps well to HPC "distributed memory" systems

- Many nodes, each with its own local memory and distinct memory space
- A node typically has multiple processors, each with multiple compute cores (Perlmutter has 64 CPU cores and 256 GPU cores per node) or 128 cores per node for CPU-Only)
- Nodes communicate over a specialized high-speed, low-latency network
- SPMD (Single Program Multiple Data) is the most common model
 - Multiple copies of a single program (tasks) execute on different processors, but compute with different data
 - Explicit programming methods (MPI) are used to move data among different tasks



History of HPC

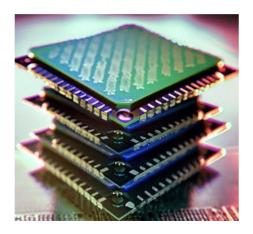
1970s The Cray-1 supercomputer

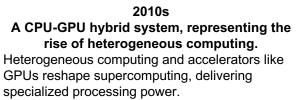
Used Vector processing technique revolutionizes supercomputing, enabling the processing of multiple data elements simultaneously.

1980s

The Connection Machine, a visually striking representation of massively parallel processing. Emergence of parallel processing and the Connection Machine drives high-performance computing to new heights.

1990s (Cray SuperServer CS6400) A cluster of interconnected computers, symbolizing the rise of cluster ine computing.


Cluster computing and distributed systems gain popularity, enabling collaborative and accessible highperformance computing.

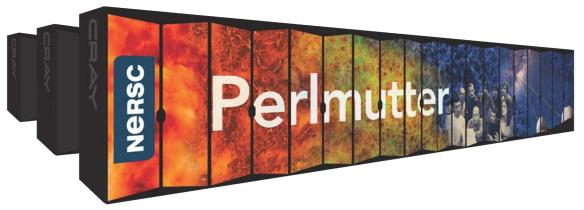

History of HPC

2000s Multicore Processors

Multi-core processors become mainstream, unleashing significant computational power within a single chip.

2020s (Present): Towards exascale supercomputer

Exascale computing and quantum computing research drive the exploration of new frontiers in computational capabilities.



What Is a Supercomputer?

A Supercomputer Is...

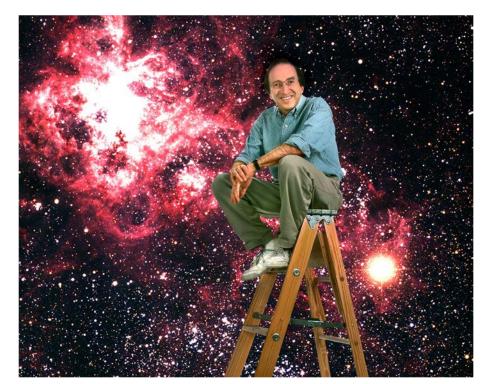
VS.

... not so different from a super high-end desktop computer.

Or rather, a lot of super high-end desktop computers.

Perlmutter (left) has ~13,300 nodes (~ high-end desktop computers)

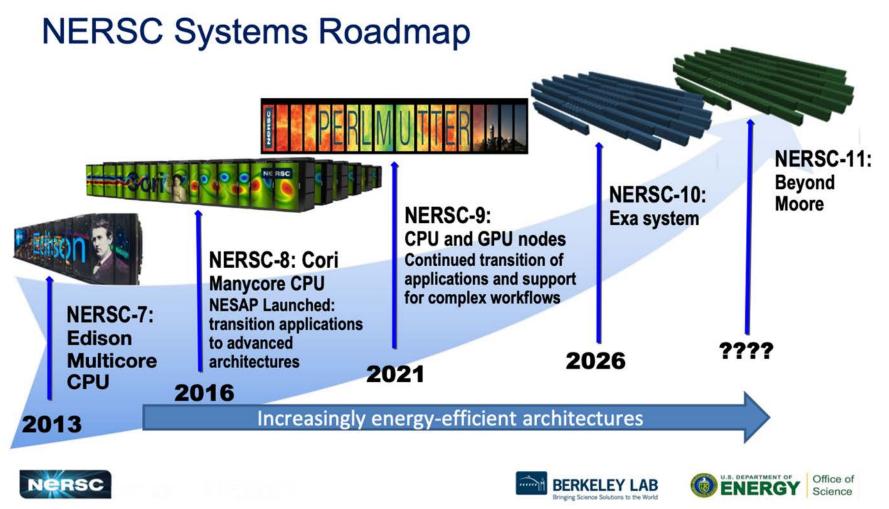
Over 760,000 compute cores



NERSC-9 is named after Saul Perlmutter

- Shared 2011 Nobel Prize in Physics for discovery of the accelerating expansion of the universe.
- Supernova Cosmology Project, lead by Perlmutter, was a pioneer in using NERSC supercomputers combine large scale simulations with experimental data analysis
- Login "saul.nersc.gov"

Office of


Perlmutter = 20 million Earth-like Planets each w/ 7 billion people doing 1 floating-point operation per second

But Wait, There's More!

The nodes are all connected to each other with a high-speed, low-latency network.

This is what allows the nodes to "talk" to each other and work together to solve problems you could never solve on your laptop or even 150,000 laptops.

Typical point-to-point bandwidth

- Supercomputer: 10 GBytes/sec,000 X Your home: 0.02* GBytes/sec

Latency

- Supercomputer:
- Supercomputer: 1 µs Your home computer: 20,000* µs
- * If you're really lucky

Cloud systems have slower networks

20,000 X

...and Even More!

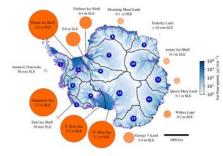
PBs of fast storage for files and data

- Perlmutter: 35 PB
- Your laptop: 0.0005 PB
- Your iPhone: 0.00005 PB

Write data to permanent storage

- Perlmutter: 5 TB/sec
- My iMac: 0.01 GB/sec

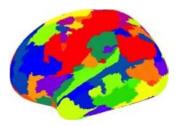
Cloud systems have slower I/O and less permanent storage



NERSC's Users Produce Groundbreaking Science

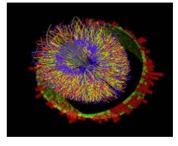
Materials Science

Revealing Reclusive Mechanisms for Solar Cells NERSC PI: C. Van de Walle, UC Santa Barbara, ACS Energy Letters



Earth Sciences

Simulations Probe Antarctic Ice Vulnerability NERSC PIs: D. Martin, Berkeley Lab; E. Ng, Berkeley Lab; S. Price, LANL. Geophysical Research Letters


Advanced Computing

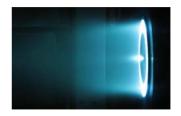
Scalable Machine Learning in HPC NERSC PI: L. Oliker, Berkeley Lab, 21st International Conference on AI and Statistics

High Energy Physics

Shedding Light on Luminous Blue Variables NERSC PI: Yan-Fei Jiang, UC Santa Barbara. *Nature*

A CONTRACTOR OF CONTRACTOR OF

Nuclear Physics


Enabling Science Discovery for STAR

NERSC PI: J. Porter, Berkeley Lab. J. Phys.: Conference Series

Plasma Physics

Plasma Propulsion Systems for Satellites

NERSC PI: I. Kaganovich, Princeton Plasma Physics Lab, *Physics of Plasmas*

26

Nobel-Prize Winning Users

for the development of multiscale models for complex chemical systems

Waters

2006 Physics

2017 Chemistry

Saul Perlmutter 2007 Peace

for the discovery of the blackbody form and anisotropy of the cosmic microwave. background radiation

George Smoot

for their efforts to build up and disseminate greater knowledge about man-made climate change -

observations of distant supernovae

Warren Washington

ne discovery of the accelerating 2011 Physics

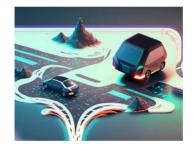
for developing cryo-electron microscopy for the highresolution structure determination of biomolecules in solution

Joachim Frank

for the discovery of neutrino oscillations. which shows that neutrinos have mass

SNO Collaboration

2015 Physics


HPC is Already Amongst You too!

- Large Language Model Training
 - ChatGPT
 - O Generative AI
- Self-Driving Technologies
 - Sensor Fusion
 - Trajectory Planning
 - O Supervised and Unsupervised Learning

Video Game Technologies

- Graphics Rendering
- O Game Testing and Quality Assurance
- O Procedural and Contextual Generation

Supporting NERSC Researchers and Users: The User Engagement Group (UEG)

Justin Cook

Kevin Gott

Lipi Gupta

Rebecca Hartman-Baker

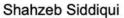
Helen He

Kadidia Konate

Alumni:

Tiffany Connors

Charles Lively



Erik Palmer

Kelly Rowland

Zhengji Zhao Steve Leak

Science

3

Bringing Science Solutions to the World

UEG Mission

The User Engagement Group engages with the NERSC user community to increase user productivity via advocacy, support, training, and the provisioning of usable computing environments.

UEG Mission: Advocacy

- Determine user needs via
 - Directly working with users
 - User surveys
 - Discovering their habits, behaviors, etc. through analysis of user data
- Advocate for those needs in future systems, training offerings, etc.

 Build NERSC community through initiatives such as the NERSC User Group (NUG), NUG Executive Committee (NUGEX), NERSC User Community of Practice, etc.

UEG Mission: Support

• Support NERSC users via

- Tickets in ServiceNow
- User appointments
- Office Hours on special topics
- Documentation
- Communications (e.g., weekly email)
- Automation of user processes
- Special interest groups
- and more!

Office of

UEG Mission: Training

- Oversee the NERSC user training program
 - Set direction for user training, taking user needs into account
- Coordinate across groups to provide NERSC user training
- Each year, we provide 20+ user training opportunities

Office of

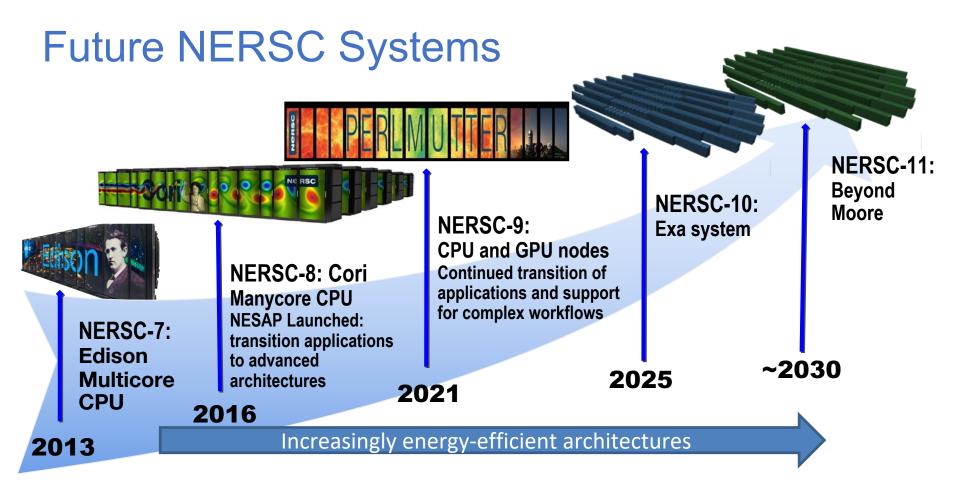
The Future Of High-Performance Computing

Perlmutter: Optimized for Science

- HPE Cray System with 3-4x capability of Cori
- GPU-accelerated and CPU-only nodes
- HPE Cray Slingshot highperformance network
- All-Flash filesystem
- Application readiness program (NESAP)

Phase I: Arrived in 2021

- 1,536 GPU-accelerated nodes
- 1 AMD "Milan" CPU + 4 NVIDIA A100 GPUs per node
- 256 GB CPU memory and 40 GB GPU high BW memory
- 35 PB FLASH scratch file system
- User access and system management nodes

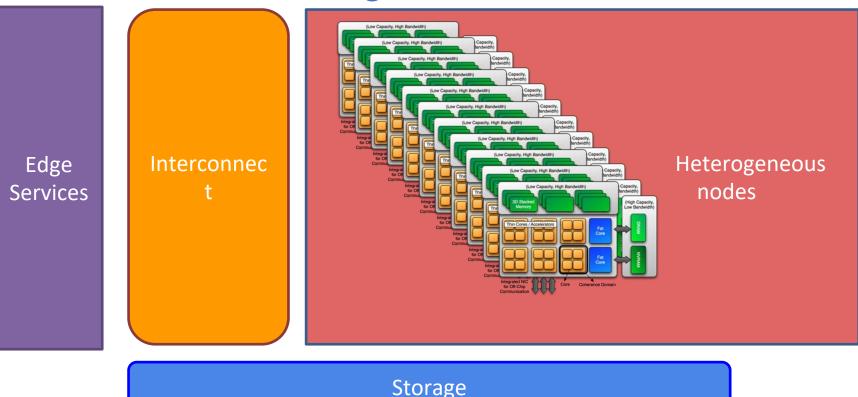

Phase II Addition: Arrived in 2022

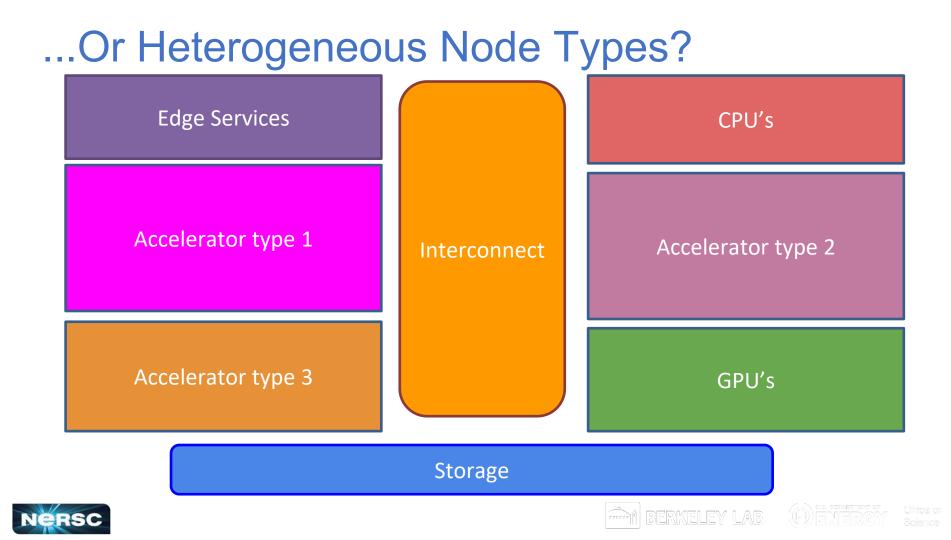
- 3,072 CPU only nodes
- 2 AMD "Milan" CPUs per node
- 512 GB memory per node
- Upgraded high speed network
- CPU partition will match or exceed performance of entire Cori system

M BERKELEY I

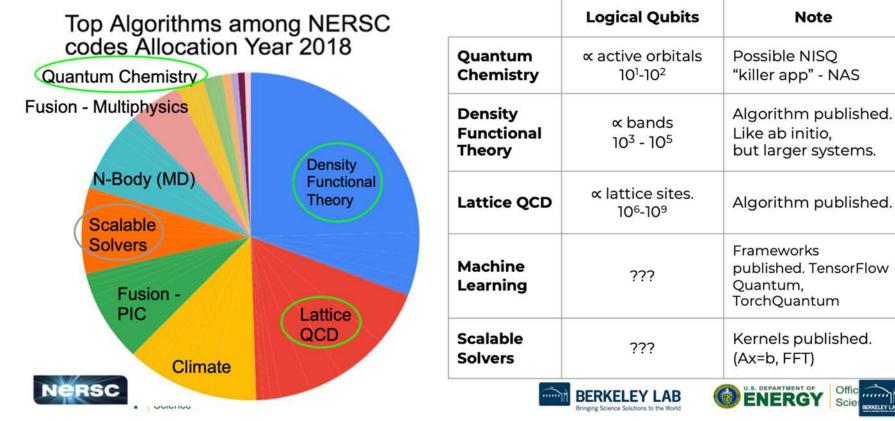
Future NERSC Systems

- Not completely clear what NERSC-10 (~2026) will look like
 - Likely heterogeneous, Exaflop-level
 - Could include ASICs or other novel architectures
- NERSC-11(~2030) is even less predictable




NERSC-10: Heterogeneous within Nodes?

ssees t BE



Quantum Computing could apply to > 50% of the NERSC Workload

mm

BERKELEY LA

Bringing Science Solutions to the World

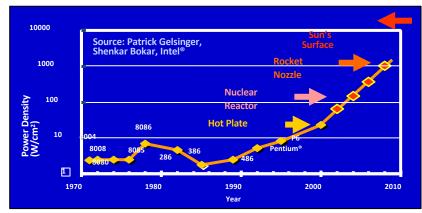
NERSC Quantum Computing Roadmap

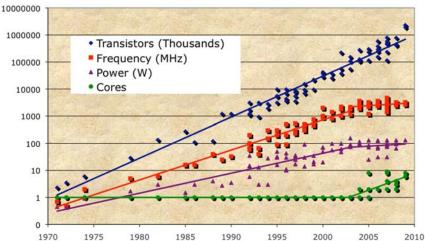
2022	2022-2024	2024-2028	2028-203?
 Ramp up engagement with QIS community Director's Discretionary Reserve Call for quantum information science (QIS) on Perlmutter 	 Engage with quantum hardware companies and gov labs Enable user access to quantum hardware Development of hybrid algorithms Identify opportunities for quantum accelerated HPC codes Benchmarking quantum hardware 	 Integration of near- term (NISQ) quantum hardware becoming standard Users requesting both classical and quantum resources 	 High-performing quantum hardware becoming available Full integration with traditional HPC Users routinely solve problems using quantum hardware !

Optimal integration of classical and quantum processors is an open area of research

Bringing Science Solutions to the World

Challenges in HPC




Power: the Biggest Architectural Challenge

- If we just kept making computer chips faster and more dense, they'd melt and we couldn't afford or deliver the power.
- Now compute cores are getting slower and simpler, but we're getting lots more on a chip.
 - GPUs and Intel Xeon Phi 0 have 60+ "light-weight

1000 100 10

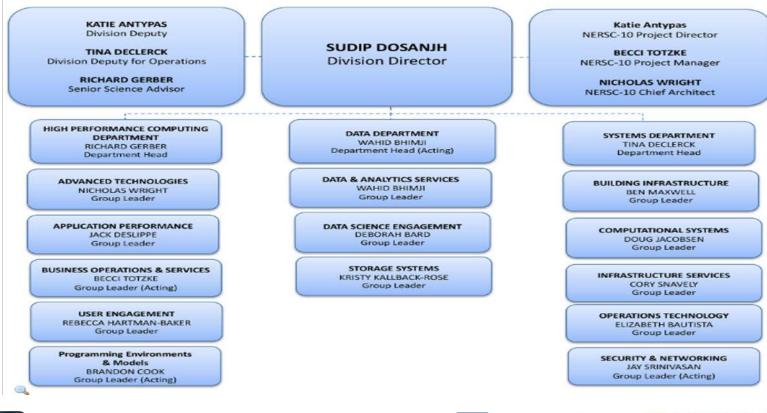
44

Programming for Advanced Architectures

- Advanced architectures (e.g., CPU+GPU offload) present challenges in programming and performance
 - Science expert must become expert on computer architectures and programming models
 - Performance on one architecture doesn't always translate to performance on another
 - Many codes not ported and many unsuitable for this type of architecture; complete overhaul required
- Data: Getting Bigger All the Time!
 - Simulations producing more data
 - Scientific instruments producing more data
 - Square Kilometre Array, when comes fully online, will produce more data in a day than currently exists!
 - Efficient workflows for data analysis and management needed

Your Challenges

- Figure out how to program the next generation of machines
- Find a way to make sense of all the data
- Build faster, more capable hardware that uses less energy
- Design energy-efficient facilities that reduce PUE
- Create effective data and job management workflows
- Bring new fields of science into HPC
- Tell the world about what you're doing!



Career Paths in HPC

The Awesome Groups @ NERSC

Office of

Science

HPC and You - Career Paths

- HPC Consultant
- HPC Research Scientist
- HPC Performance Engineer
- HPC Architect
- HPC Data Scientist
- HPC System Administrator
- HPC Application Developer
- HPC Cloud Architect
- HPC Educator/Trainer

Office of Science

Questions?

