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Mission of Scalable Solvers Group (SSG)

https://crd.lbl.gov/divisions/amcr/applied-mathematics-dept/scalable-solvers/

The group develops fast, parallel algorithms and software for solving the linear 
and eigenvalue algebraic systems, and deliver the solvers tools to the broad 
community through libraries and collaboration with domain scientists.

https://crd.lbl.gov/divisions/amcr/applied-mathematics-dept/scalable-solvers/
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Black-box solvers

Purely algebraic, matrix input 
Ax = b,  Ax = λx

Application-specific
linear algebra tools

Specialized to accelerator, chemistry, 
fusion, materials, ML, nuclear physics, 
quantum comput., transportation, . . .

• Multilevel, multigrid,  hierarchical 
algorithms 

• Reduce communication / synchronization  
• Increase concurrency
• Improve convergence 
• HPC-aware: GPUs, …

Improve algorithmic efficiency, 
parallelism, and solution quality

Algebraic solvers are fundamental tools
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• Dense linear algebra (LAPACK/ScaLAPACK, ButterflyPACK)
• Sparse linear solvers

– Direct solvers (STRUMPACK, SuperLU, symPACK)
– Multigrid (GAMG in PETSc)
– Algebraic preconditioner (STRUMPACK)
– Hybrid solver (PDSLin)

• Eigenvalue calculations
– Lanczos / Arnoldi iterative eigensolver (BLZPACK, PARPACK)
– Non-Hermitian eigensolver for interior eigenvalues (software: GPLHR)
– Application-specific structured eigensolvers

Electronic structure, quantum chemistry, nuclear physics (PEXSI, BSEPAC, SpectrumSlicing)
Linear, nonlinear, parameterized eigenvalue problems

• Multi-linear algebra (tensor) (FunFact)
• High-precision floating-point arithmetic (QD, ARPREC, XBLAS)
• Machine learning for sciences (GAP, GPTune)
• Quantum computing algorithms (FABLE, F3C, QCLAB)

Expertise, capabilities
(Most software packages are open source, BSD License)

https://crd.lbl.gov/divisions/amcr/applied-mathematics-dept/scalable-solvers/software/
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Linear Solvers
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Linear solvers, eigensolvers, preconditioners, …
“Fast” == asymptotically lower arithmetic and/or communication

Research themes:
• Hiding/avoiding communication/synchronization

– Latency / bandwidth / flops / memory
• Randomized algorithms

– sampling, sketching, projection, dimension reduction
• Low-rank approximations

– Exploit localization
• Hierarchical & multilevel methods

– Multigrid, FFT, FMM, 𝓗2/HSS matrices, Butterfly

Research and development in fast solvers
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Data-sparse approximation via low-rank compression

Same mathematical foundation as FMM [Greengard-Rokhlin’87], 

put in matrix form:
– Diagonal block (“near field”) exact
– Off-diagonal block (“far field”) approximate
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Sketching to find good bases
randomized projection

Approximate range of A:

1. Pick random matrix Ωnx(k+p), k target rank, p small, e.g. 10

2. Sample matrix S = A Ω (tall-skinny)

3. Compute Q = ON-basis(S) via rank-revealing QR

Then, 𝐴 ≈ 𝑄𝑄∗𝐴

Benefits: only need matvec, “matrix-free” 
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Faster sketching

Several choices of Ω rather than dense Gaussian matrix
– Example: Jonhson-Lindenstrauss transform (JLT)

– Serve as dimensionality reduction (subspace embedding)
– Sparse JLT: each column in R has 𝛼 < 𝑑 nonzeros

The nonzero entries are drawn independently from a scaled 
Rademacher distribution, taking values in !

"
, − !

"
with equal 

probability

- 10 - Computing Sciences Area



Construction of Hierarchically Semi-Separable Matrix Representations 
Using Adaptive Johnson-Lindenstrauss Sketching

Scientific Achievement

Significance and Impact

Research Details

Implemented adaptive randomized Hierarchically Semi-
Separable (HSS) matrix construction using the Sparse 
Johnson-Lindenstrauss Transform (SJLT), which is 
significantly faster than Gaussian sketching, and we 
provide theoretical justifications for this extension.

HSS and other hierarchical or data-sparse matrix 
representations are widely used to represent large 
dense matrices from various applications such as 
boundary element methods, ML kernel methods, etc.

Illustration of a symmetric HSS matrix with 3 levels. Diagonal blocks are 
partitioned recursively. Gray blocks denote the basis matrices. 

Right: Tree representation of the HSS matrix.

Y. Yaniv, O.A. Malik, P. Ghysels, X.S. Li. "Construction of Hierarchically Semi-Separable Matrix 
Representation using Adaptive Johnson-Lindenstrauss Sketching". arxiv.org:2302.01977

− Extended concentration bounds to all JL sketching 
operators: Gaussian, Subsampled Randomized Hadamard 
Transform (SRHT) and SJLT

− Implemented of SJLT in C++ STRUMPACK library, up to 
2.5x speedup for HSS construction over Gaussian 
sampling, with comparable accuracy and rank pattern

HSS construction time and random sketching time for a 1D kinetic energy 
quantum chemistry problem, and for an impedance matrix describing a 

scattering wave. G refers to Gaussian, S(α) to SJLT with α nonzeros per row. 
Overall speedup over Gaussian sketching is shown at the top of each bar.

Yotam Yaniv (NSF-MSGI), Osman Malik, Pieter Ghysels, Sherry Li

https://arxiv.org/abs/2302.01977
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Advances in numerical linear algebra improves ML
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Example: Kernel Ridge Regression in ML
Ridge regression + Kernel trick

• Training:
Minimize	cost	function:	𝑎𝑟𝑔𝑚𝑖𝑛! 𝐶 𝑤 = ∑"(𝑦" − 𝑤#𝑥")$ + 𝜆 𝑤 $

𝑥" data points, 𝑦" labels
𝑤 is a vector normal to the target hyperplane

Optimal	weights:
𝑤 = 𝑋#(𝜆 𝐼 + 𝑋𝑋#)%&y , 𝑋'×) a matrix of training data

• Prediction:	
Given	a	test	vector	𝑥&, compute:
𝑦& ≔ 𝑤#𝑥& = (𝜆 𝐼 + 𝑋𝑋#)%&y #𝑋𝑥&

≈ (𝜆 𝐼 + 𝒦(𝑋, 𝑋) )%&y # V 𝒦(𝑋, 𝑥&) ⟵ kernel	trick	

• Binary	classifier:	class	label	predicted	by	the	sign	of	𝑦&
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Comparison between scikit-learn and HSS-ANN

Scikit-learn only provides shared-memory parallelism
HSS in STRUMPACK works on distributed memory
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STRUMPACK to scikit-learn Python interface

• Scikit-learn: ML in Python, http://scikit-learn.org/stable/
– classifiers and regressors

• STRUMPACK Python interface class: STRUMPACKKernel
– derives from scikit-learn base classes BaseEstimator and 

ClassifierMixin
– implements member functions: fit, predict and 

decision_function
– can be used for multi-class classification through scikit-learn 

One-Vs-One or One-Vs-All estimators

14

http://scikit-learn.org/stable/


Fast GPU Solvers for Many Small Systems with PETSc
HBPS FES Partnership
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Scientific Achievement
Many applications have many small linear systems of equations to be 
solved concurrently. Modern hardware can consume the mass parallelism 
available in these applications, but new techniques are required to exploit 
this parallelism. This project has solved this problem for one application 
in plasma physics; the solver has been deployed in the PETSc numerical 
library.

Timing for all-GPU fully implicit evolution of Fokker-Planck collision 
operator on benchmark problem3. Total solve time (sec) includes 
cost of GPU Jacobian matrix creation within a Newton nonlinear 
solver, that uses the new batch linear solvers for each species on 
each “vertex” in a harness code (example in PETSc release). New 
batch solvers are comparted with ensemble solvers where all 
systems are stacked into a single large linear system  

Technical Approach
A custom implementation of standard Krylov solvers was developed that 
is designed to use accelerators effectively with vectorization; it was 
written in Kokkos for performance portability. Solvers were developed in 
the PETSc numerical framework and deployed in PETSc for dissemination 
to the broader scientific computing community

PI: Mark F. Adams, Berkeley Lab
Collaborating Institutions: University of Buffalo
ASCR Program: FES Partnership and FASTMath
ASCR PM: FES John Mandrekas; ASCR: Randall Laviolette
Publication: M. F. Adams, P. Wang, and M. G. Knepley, “A performance 
portable, fully implicit landau collision operator with batched linear 
solvers” IPDPS 2022, https://doi.org/10.48550/arXiv.2209.03228
Code Developed: Released in PETSc v3.19

N=647K Total (sec) Solver Vec ops

Batch 5.9 1.6 0.2

Ensemble 14.1 7.0 (5.9)

Contact: Mark Adams
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Scaling Eigenvalue Solvers on GPU-Based Supercomputers

Scientific Achievement
The pursuit of better parallel scaling of iterative eigenvalue solvers on GPU-
based supercomputers has exposed a need for counterintuitive 
rearrangements of data layouts and linear algebra computations.

Significance and Impact
• Eigenvalue solvers are an essential part of many scientific applications, 

including materials and chemistry (Schrödinger equation), often taking a 
significant share of the workload in DOE computer facilities.

• The system sizes and physical phenomena that can be studied are often 
constrained by the parallel scaling of the solvers and codes.

• The scaling of iterative eigenvalue solvers is usually limited by a 
reorthogonalization step that needs to be applied to the iterate vectors.

Technical Approach
• This research revisited unconstrained minimizations techniques – more 

complex than standard techniques but without a reorthogonalization step 
– as an alternative for eigenvalue solvers.

• Recent experiments have revealed a need for going beyond kernel 
implementations provided by well-established libraries .

PI(s)/Facility Lead(s): Osni Marques, Berkeley Lab. Collaborators: D. T. Popovici, M. del Ben, and A. 
Canning. 
ASCR Program: SciDAC
ASCR PM: Ceren Susut-Bennett
Publication(s) for this work: M. Del Ben, O. Marques, and A. Canning, “Improved Unconstrained Energy 
Functional Method for Eigensolvers in Electronic Structure Calculations”, ICPP2019. Recent results 
presented at SIAM CSE 2023.

Linear algebra computations in 
eigenvalue solvers, e.g., Jacobi 
Davidson, PPCG, Conjugate 
Gradient Minimization, and 
Unconstrained Conjugate Gradient 
Minimization. While computations 
involving a square matrix and FFTs 
scale well, others may need more 
specialized implementations.  

Contact: Osni Marques



Diffusion Map for Collective Variable Identification
With the BES SciDAC Partnership “A chemistry based, data science enabled and high performance powered predictive framework to control the decomposition of 

polymer mixtures”

Scientific Achievement
Diffusion coordinates obtained from a local diffusion map (DM), constructed from 
samples along an ab initio molecular dynamics (AIMD) trajectory within a meta-
stable region of the potential energy surface of a molecular system, can identify 
good collection variables (CVs) that can be used to describe the main reaction 
mechanism. In addition, a global diffusion map can be used to perform a 
committor analysis of the free energy surface.

Significance and Impact
The proposed methodology enables scientists to identify effective CVs for 
hydrogen combustion systems that are paramount for characterizing the primary 
reaction pathway in a reduced dimensional space or manifold.

Technical Approach
• Construct a diffusion kernel from samples along an AIMD trajectory and obtain 

diffusion coordinates by computing the eigenpairs of the DM matrix.
• Compute correlation coefficients between diffusion coordinates and CV 

candidates( e.g., internal coordinates, principal components).
• Use DM to solve a backward Kolmogorov equation to obtain a committor

function. 

PI(s): Chao Yang, LBNL
Collaborating Institutions: UC Berkeley (Teresa Head-Gordon)
ASCR Program: BES SciDAC Partnership 
ASCR PM: Lali Chatterjee
Publication: T. Ko, J. Heindel, X.Guan,T. Head-Gordon, D. Williams-Young and C. Yang, “Using 
Diffusion Maps to Analyze Reaction Dynamics for a Hydrogen Combustion Benchmark Dataset,” 
arXiv:2304.09296

Contact: Chao Yang



19

Quantum Computing Algorithms



Scientific Achievement
Deriving the quantum Fourier transform (QFT) from the fast Fourier transform (FFT)

Quantum Fourier Transform Revisited

LDRD PI: Roel Van Beeumen (LBNL)
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Significance and Impact
Proves the linear algebra relation between FFT and 
QFT with little knowledge of quantum computing and 
by only using elementary properties of Kronecker 
products of matrices.

Research Details
• FFT algorithm can be derived as a particular matrix 
decomposition of the discrete Fourier transformation 
(DFT) matrix

• QFT algorithm can be derived by further decomposing 
the diagonal factors in the FFT decomposition into 
products of matrices with Kronecker product structure

• QFT decomposition of the DFT matrix and the 
corresponding quantum circuit is not unique

• Extended the radix-2 QFT decomposition to a radix-d
QFT decomposition
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Quantum circuit representation of the
decomposition of the diagonal matrices Dn

Quantum circuit of the DFT matrix 
decomposition

D. Camps, R. Van Beeumen, and C. Yang
Quantum Fourier Transform Revisited
Numerical Linear Algebra Appl., 2021.

2n input length
Classical FFT: O(2n n)
Quantum gates: O(n2) 



Scientific Achievement
QCLAB++ is a light-weight, fully templated C++ package for GPU-
accelerated quantum circuit simulations. The code offers a high degree of 
portability, as it has no external dependencies and the GPU kernels are 
generated through OpenMP offloading.

Significance and Impact
QCLAB++ is designed for performance and numerical stability through 
highly optimized gate simulation. The GPU kernels generated by OpenMP 
can yield speedup factors of more than 40x, hence enabling efficient 
quantum circuit simulations up to 32 qubits.

Technical Approach
• Efficient gate simulation algorithms for 1-qubit and 2-qubit gates:

a single for loop combined with bit operations for index calculations.
• Portable state vector simulator with GPU kernels generated by OpenMP.
• Benchmarks conducted on NERSC’s Perlmutter system illustrate its 

competitiveness to other circuit simulation packages.

QCLAB++: Simulating Quantum Circuits on GPUs

QCLAB++: CPU versus GPU for QFT circuit (Perlmutter - NVIDIA A100
GPU): GPU kernels exhibit a perfect linear scaling on the loglog plot for
systems with more than 22 qubits. The CPU simulation exhibits less regular
scaling in the timings due to memory access effects, yielding speedup
factors of more than 40x.

PI: Roel Van Beeumen (Berkeley Lab)
ASCR Program: NERSC QIS@Perlmutter
ASCR PM: Dr. Thomas Wong
Publication for this work: R. Van Beeumen, D. Camps, N. Mehta, “QCLAB++: Simulating quantum 
circuits on GPUs,” arXiv:2303.00123 (2023), doi:10.48550/arXiv.2303.00123.
Code Developed: https://github.com/QuantumComputingLab/qclabpp

GitHub:
QuantumComputingLab

/qclabpp

https://doi.org/10.48550/arXiv.2303.00123
https://github.com/QuantumComputingLab/qclabpp
https://github.com/QuantumComputingLab/qclabpp
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Machine Learning for Space Weather Mitigation
An ASCR – Office of Electricity Pilot Project

Scientific Achievement
A heterogeneous graph neural network (GNN) was developed to predict 
optimal load in the maximum loadability problem; the team is also working 
toward optimal blocker placement.
Significance and Impact
Geomagnetic disturbances resulting from intense solar activity caused by 
coronal mass ejections pose risks to the electrical grid by generating 
geomagnetically induced currents (GICs). Optimal blocker placement will 
significantly reduce the impact of this problem. This GNN-based machine 
learning prediction approach results in high-quality solutions found in 
shorter computation time than traditional solvers (e.g., Julia optimizers 
such as PowerModelsGMD.jl).

• The heuristic approach involves generating random perturbations on a given 
power grid and feeding those perturbations into one of the optimizers in the 
PowerModelsGMD.jl package, which finds the optimal real ("pd") and reactive 
("qd") power demands. 

• The machine learning approach on the bottom involves feeding the same 
power grid data into the heterogeneous GNN, passing through several 
convolutional and Multi-Layer Perception (MLP) layers. 

• The true values from the optimizer and the predicted values from the machine 
learning model are then used to compute the loss to evaluate the model's 
performance.

Technical Approach
• Modeled AC and DC networks with various node and edge features.
• GNN predictive models for maximum loadability regression and 

for classification for GIC blocker placement.
• Found that training for the loadability problem on 300 perturbed input 

graphs is faster than heuristic solver on a single graph.
• Used DeepHyper to optimize hyperparameters and improve accuracy.
PI: Pieter Ghysels, Berkeley Lab
Collaborating Institutions: Office of Electricity, LANL, ORNL, UC Berkeley, ANL
ASCR Program: RAPIDS/FASTMath
ASCR PM: Randall Laviolette, Ceren Susut-Bennet, Lali Chatterjee

Contact: Pieter Ghysels



Scientific Achievement
§ Optimization :  min

*
𝑦 𝑡, 𝑥 , 𝑥 : parameter con,iguration

§ Applicable to any black-box software

Significance and Impact
Gaussian process (GP) models can act as surrogates for code 
performance or first-principle physics for many expensive SciDAC and 
ECP applications. Our work leverages multi-task and multi-fidelity GP 
models to allow accurate surrogates.  

Research Details
§ Features: multi-task, multi-objective, and multi-fidelity
§ Added multi-objective tuning features to allow memory/time tradeoff
§ Supported multi-task and transfer learning features to leverage 

correlation between tuning tasks to improve model accuracy
§ History database for crowd-tuning
§ GPTune has been applied to Hypre, MFEM, STRUMPACK, SuperLU_DIST, 

PLASMA, SLATE, ScaLAPACK, NIMROD, M3D-C1, IMPACT-Z, CNN, GCN, 
kernel ridge regression, sketching-based linear square solvers.

GPTune autotuner: Bayesian optimization with Gaussian Process surrogate modeling
Younghyun Cho, Jim Demmel, Sherry Li, Yang Liu, Henrui Luo

GPTuneBand beats other tuners for 
tuning GCN on the Citeseer dataset  

Y. Cho, J. W. Demmel, X. S. Li, Y. Liu, and H. Luo, IEEE MCSoC, 2021
X. Zhu, Y. Liu, P. Ghysels, D. Bindal, and X. S. Li, SIAM PP, 2022
H. Luo, J.W. Demmel, Y. Cho, X. S. Li, and Y. Liu, JMLR, submitted
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