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Mission of Scalable Solvers Group (SSG)

https://crd.lbl.gov/divisions/amcr/applied-mathematics-dept/scalable-solvers/

The group develops fast, parallel algorithms and software for solving the linear
and eigenvalue algebraic systems, and deliver the solvers tools to the broad
community through libraries and collaboration with domain scientists.
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https://crd.lbl.gov/divisions/amcr/applied-mathematics-dept/scalable-solvers/

Algebraic solvers are fundamental tools

Application-specific

Black-box solvers :
linear algebra tools

Specialized to accelerator, chemistry,
fusion, materials, ML, nuclear physics,
quantum comput., transportation, . . .

Purely algebraic, matrix input
Ax=b, Ax=Ax

e Multilevel, multigrid, hierarchical
algorithms

Improve algorithmic efficiency, « Reduce communication / synchronization

parallelism, and solution quality « Increase concurrency

* Improve convergence

* HPC-aware: GPUs, ...
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Expertise, capabilities

(Most software packages are open source, BSD License)

https://crd.Ibl.gov/divisions/amcr/applied-mathematics-dept/scalable-solvers/software/

* Dense linear algebra (LAPACK/ScalLAPACK, ButterflyPACK)

e Sparse linear solvers
— Direct solvers (STRUMPACK, SuperLU, symPACK)
— Multigrid (GAMG in PETSc)
— Algebraic preconditioner (STRUMPACK)
— Hybrid solver (PDSLin)
* Eigenvalue calculations
— Lanczos / Arnoldi iterative eigensolver (BLZPACK, PARPACK)
— Non-Hermitian eigensolver for interior eigenvalues (software: GPLHR)
— Application-specific structured eigensolvers
Electronic structure, quantum chemistry, nuclear physics (PEXSI, BSEPAC, SpectrumSlicing)
Linear, nonlinear, parameterized eigenvalue problems

* Multi-linear algebra (tensor) (FunFact)

* High-precision floating-point arithmetic (QD, ARPREC, XBLAS)
* Machine learning for sciences (GAP, GPTune)

* Quantum computing algorithms (FABLE, F3C, QCLAB)
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Research and development in fast solvers

Linear solvers, eigensolvers, preconditioners, ...
“Fast” == asymptotically lower arithmetic and/or communication

Research themes:

* Hiding/avoiding communication/synchronization

— Latency / bandwidth / flops / memory
 Randomized algorithms

— sampling, sketching, projection, dimension reduction
* Low-rank approximations

— Exploit localization
e Hierarchical & multilevel methods

— Multigrid, FFT, FMM, #£2/HSS matrices, Butterfly

. DEPARTMENT OF Office of
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Data-sparse approximation via low-rank compression

Same mathematical foundation as FMM [Greengard-Rokhlin’87],

put in matrix form:

— Diagonal block (“near field”) exact
— Off-diagonal block (“far field”) approximate

FMM Algebraic

separability of Green's function low-rankness off-diagonal

D Ul Bl I/ZT

singular value decomposition (SVD)
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Sketching to find good bases

randomized projection

Approximate range of A:
1. Pick random matrix Q.. k target rank, p small, e.g. 10
2. Sample matrix S = A Q (tall-skinny)
3. Compute Q = ON-basis(S) via rank-revealing QR

Then, A = QQ"A

Benefits: only need matvec, “matrix-free”

.f'f’ U.S. DEPARTMENT OF Oﬁlce Of
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Faster sketching

Several choices of QQ rather than dense Gaussian matrix
— Example: Jonhson-Lindenstrauss transform (JLT)

DerFINITION 2.3 (JL Sketching Operator). Suppose D is a distribution over ma-
trices of s-ize@x n. We say that a matriz R ~ D is a (n,d, d,=)-JL sketching operator
if for any vector x € R™ it satisfies

r 2 wou2l < _u-n2l . £
Pr[[I1Rz]? - |lz]?| > llz)?] < 6.

— Serve as dimensionality reduction (subspace embedding)

— Sparse JLT: each column in R has &« < d nonzeros
The nonzero entries are drawn independently from a scaled

Rademacher distribution, taking values in { with equal

1 1 }
NN
probability

=%, U-S. DEPARTMENT OF Office of -10 - Computing Sciences Area
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Construction of Hierarchically Semi-Separable Matrix Representations
Using Adaptive Johnson-Lindenstrauss Sketching
Yotam Yaniv (NSF-MSGI), Osman Malik, Pieter Ghysels, Sherry Li

Scientific Achievement
Implemented adaptive randomized Hierarchically Semi-
Separable (HSS) matrix construction using the Sparse
Johnson-Lindenstrauss Transform (SJLT), which is

significantly faster than Gaussian sketching, and we llustration of a symmetric HSS matrix with 3 levels. Diagonal blocks are
prowde theoretical jUStlflcatlonS for this extension. partitioned recursively. Gray blocks denote the basis matrices.

Right: Tree representation of the HSS matrix.

Significance and Impact .
. . . S5 1 4 1
HSS and other hierarchical or data-sparse matrix e ‘

o . = | < ‘
representations are widely used to represent large ok 21 . ﬁ;ﬁﬁ é ﬁ ﬂ
dense matrices from various applications such as il e ol U
boundary element methods, ML kernel methods, etc. v 15[ 5

_ |l 15 _
Research Details SOBT L R 47 10 _ i
. ) - 3 .97 599 297 2:24 1F9f 198
- Extended concentration bounds to all JL sketching 4% 5 E ﬁ 5 Ij Er 5 H
operators: Gaussian, Subsampled Randomized Hadamard “  0°; ¢ siss %G 51 52 st ss %G S os2 St oss
Transform (SRHT) and SILT HSS construction time and random sketching time for a 1D kinetic energy
. . quantum chemistry problem, and for an impedance matrix describing a
- ImplementEd Of SILT in C++ STRUMPACK Ilbrary: up to scattering wave. G refers to Gaussian, S(a) to SILT with o nonzeros per row.
2.5x speedup for HSS construction over Gaussian Overall speedup over Gaussian sketching is shown at the top of each bar.

samp“ng’ with comparab|e accuracy and rank pattern Y. Yaniv, O.A. Malik, P. Ghysels, X.S. Li. "Construction of Hierarchically Semi-Separable Matrix
Representation using Adaptive Johnson-Lindenstrauss Sketching". arxiv.org:2302.01977

H BERKELEY LAB
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https://arxiv.org/abs/2302.01977

Advances in numerical linear algebra improves ML

Example: Kernel Ridge Regression in ML
Ridge regression + Kernel trick

® Training:
Minimize cost function: argmin,, C(w) = ¥;(y; —wlx;))? + 1 |lw]|?
x; data points, y; labels
w is a vector normal to the target hyperplane

Optimal weights:
w=XTAI+XxX")"ly,  X™4amatrix of training data

® Prediction:
Given a test vector x;, compute:
yi=wix = [AT+XX")y]"Xx,
~[(A1+ KX, X)) y]T - K(X,x;) < kernel trick

* Binary classifier: class label predicted by the sign of y;

U.S. DEPARTMENT OF Office of -12 - Computing Sciences Area
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Comparison between scikit-learn and HSS-ANN

Scikit-learn only provides shared-memory parallelism
HSS in STRUMPACK works on distributed memory

| | | | |
5 Cholesky O(n3) SUSY dataset fom UCI
10° =
= O(n polylog(n))
o |
=
; 102 | =
3
scikit-learn (32 cores)
—a— HSS-ANN (32 cores) | |
—— HSS-ANN (1280 cores)
101 ] ] ]

1 1 1
40k 60k 100k 200k 500k 1M

Training dataset size (n)
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STRUMPACK to scikit-learn Python interface

» Scikit-learn: ML in Python, http://scikit-learn.org/stable/

— classifiers and regressors

« STRUMPACK Python interface class: STRUMPACKKernel
— derives from scikit-learn base classes BaseEstimator and
ClassifierMixin

— implements member functions: fit, predict and
decision_function

— can be used for multi-class classification through scikit-learn
One-Vs-One or One-Vs-All estimators

.r"" U.S. DEPARTMENT OF Oﬁ'Ce Of
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Fast GPU Solvers for Many Small Systems with PETSc

HBPS FES Partnership

Scientific Achievement

Many applications have many small linear systems of equations to be
solved concurrently. Modern hardware can consume the mass parallelism
available in these applications, but new techniques are required to exploit
this parallelism. This project has solved this problem for one application
in plasma physics; the solver has been deployed in the PETSc numerical
library.

Significance and Impact

Fast small system solvers will allow high dimensional problems with tensor
structure (eg, 3D @ X), as well as other applications such as UQ and domain
decomposition smoothers for global multigrid solvers, to continue to use
emerging hardware effectively.

Technical Approach

A custom implementation of standard Krylov solvers was developed that
is designed to use accelerators effectively with vectorization; it was
written in Kokkos for performance portability. Solvers were developed in
the PETSc numerical framework and deployed in PETSc for dissemination
to the broader scientific computing community

Contact: Mark Adams

N=647K Total (sec) |Solver [Vec ops
Batch 5.9 1.6 0.2
Ensemble 14.1 7.0 (5.9)

Timing for all-GPU fully implicit evolution of Fokker-Planck collision
operator on benchmark problem3. Total solve time (sec) includes
cost of GPU Jacobian matrix creation within a Newton nonlinear
solver, that uses the new batch linear solvers for each species on
each “vertex” in a harness code (example in PETSc release). New
batch solvers are comparted with ensemble solvers where all
systems are stacked into a single large linear system

Pl: Mark F. Adams, Berkeley Lab

Collaborating Institutions: University of Buffalo

ASCR Program: FES Partnership and FASTMath

ASCR PM: FES John Mandrekas; ASCR: Randall Laviolette
Publication: M. F. Adams, P. Wang, and M. G. Knepley, “A performance
portable, fully implicit landau collision operator with batched linear
solvers” IPDPS 2022, https://doi.org/10.48550/arXiv.2209.03228

Code Developed: Released in PETSc v3.19

=PETSc waTAO 221l BERKELEY LAB

PR US: DEPARTMENT OF | (ffica of
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Eigen Solvers
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Scaling Eigenvalue Solvers on GPU-Based Supercomputers

Scientific Achievement

The pursuit of better parallel scaling of iterative eigenvalue solvers on GPU-
based supercomputers has exposed a need for counterintuitive
rearrangements of data layouts and linear algebra computations.

Significance and Impact

« Eigenvalue solvers are an essential part of many scientific applications,
including materials and chemistry (Schrodinger equation), often taking a
significant share of the workload in DOE computer facilities.

* The system sizes and physical phenomena that can be studied are often
constrained by the parallel scaling of the solvers and codes.

* The scaling of iterative eigenvalue solvers is usually limited by a
reorthogonalization step that needs to be applied to the iterate vectors.

Technlcal Approach
This research revisited unconstrained minimizations techniques — more
complex than standard techniques but without a reorthogonalization step
— as an alternative for eigenvalue solvers.

* Recent experiments have revealed a need for going beyond kernel
implementations provided by well-established libraries .

Contact: Osni Marques

Execution Time [Log Scale]

Results on Perlmutter
Strong Scaling Results

4096000

GPU-Based Implementation SUMMA
1024000

~—#— GPU-Based Implementation Cannon

256000 w=dr=GPU-Based FFT

64000 M

1o T~

4000

X

1000 T T T T ]
8 16 32 64 128 256 512 1024

Number of MPI ranks

Pl(s)/Facility Lead(s): Osni Marques, Berkeley Lab. Collaborators: D. T. Popovici, M. del Ben, and A.
Canning.

ASCR Program: SciDAC

ASCR PM: Ceren Susut-Bennett

Publication(s) for this work: M. Del Ben, O. Marques, and A. Canning, “Improved Unconstrained Energy
Functional Method for Eigensolvers in Electronic Structure Calculations”, ICPP2019. Recent results
presented at SIAM CSE 2023.

Linear algebra computations in
eigenvalue solvers, e.g., Jacobi
Davidson, PPCG, Conjugate
Gradient Minimization, and
Unconstrained Conjugate Gradient
Minimization. While computations
involving a square matrix and FFTs
scale well, others may need more
specialized implementations.

B¥R U-S- DEPARTMENT OF | (Yffina of
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Diffusion Map for Collective Variable Identification

With the BES SciDAC Partnership “A chemistry based, data science enabled and high performance powered predictive framework to control the decomposition of

I H t ”
polymermptures Contact: Chao Yang

Scientific Achievement

Diffusion coordinates obtained from a local diffusion map (DM), constructed from
samples along an ab initio molecular dynamics (AIMD) trajectory within a meta-
stable region of the potential energy surface of a molecular system, can identify
good collection variables (CVs) that can be used to describe the main reaction
mechanism. In addition, a global diffusion map can be used to perform a
committor analysis of the free energy surface.

Significance and Impact
The proposed methodology enables scientists to identify effective CVs for

hydrogen combustion systems that are paramount for characterizing the primary worer M ™ piu

reaction pathway in a reduced dimensional space or manifold.

The potential energy surface in two internal coordinate based CVs near the
Tech nlcal Approach transition state of the substitution reaction H,0, + H —» H,0 + OH
Construct a diffusion kernel from samples along an AIMD trajectory and obtain =046, T=3000K
diffusion coordinates by computing the eigenpairs of the DM matrix. b Rewat] .
. . . . . Product 09
» Compute correlation coefficients between diffusion coordinates and CV TS
candidates( e.g., internal coordinates, principal components).
+ Use DM to solve a backward Kolmogorov equation to obtain a committor

23

22

2.1

H-01-02
~

function. 5 0.4
* 03
1.8
0.2
1.7
PI(s): Chao Yang, LBNL ""
Collaborating Institutions: UC Berkeley (Teresa Head-Gordon) 16 i 15 2 25 !
ASCR Program: BES SciDAC Partnership O
ASCR PM: Lali Chatterjee The committor function obtained from the diffusion map constructed from
Publication: T. Ko, J. Heindel, X.Guan, T. Head-Gordon, D. Williams-Young and C. Yang, “Using AIMD trajectories of the reaction H + 02 — HO,
Diffusion Maps to Analyze Reaction Dynamics for a Hydrogen Combustion Benchmark Dataset,”
arXiv:2304.09296
S U.S. DEPARTMENT OF Office of ~
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Quantum Computing Algorithms



Quantum Fourier Transform Revisited

2" input length

Scientific Achievement Classical FFT: O(2"n)
Deriving the quantum Fourier transform (QFT) from the fast Fourier transform (FFT) Quantum gates: O(n?)
Significance and Impact T
Proves the linear algebra relation between FFT and ® o
QFT with little knowledge of quantum computing and ; D, : P,
by only using elementary properties of Kronecker o1 Drt]
products of matrices. . ] I
. Quantum circuit of the DFT matrix
Research Details decomposition
* FFT algorithm can be derived as a particular matrix
decomposition of the discrete Fourier transformation " | ‘ i
@ ] L ..

(DFT) matrix

* QFT algorithm can be derived by further decomposing | R, .
the diagonal factors in the FFT decomposition into

. . n _ L R:‘
products of matrices with Kronecker product structure Quantum cirouit tion of th
” . uantum circuit representation or the
° QFT deCOI'T]pOSItIOn Of the DFT matrIX and the decomposiﬁon of the d/agona[ matrices Dn
corresponding quantum circuit is not unique
* Extended the radix-2 QFT decomposition to a radix-d D. Camps, R. Van Beeumen, and C. Yang
QFT decomposition Quantum Fourier Transform Revisited

Numerical Linear Algebra Appl., 2021.

LDRD Pl: Roel Van Beeumen (LBNL)

B U.S. DEPARTMENT OF Office of
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QCLAB++: Simulating Quantum Circuits on GPUs

Scientific Achievement

QCLAB++ is a light-weight, fully templated C++ package for GPU-
accelerated quantum circuit simulations. The code offers a high degree of
portability, as it has no external dependencies and the GPU kernels are
generated through OpenMP offloading.

Significance and Impact

QCLAB++ is designed for performance and numerical stability through
highly optimized gate simulation. The GPU kernels generated by OpenMP
can yield speedup factors of more than 40x, hence enabling efficient
quantum circuit simulations up to 32 qubits.

Technlcal Approach
Efficient gate simulation algorithms for 1-qubit and 2-qubit gates:
a single for loop combined with bit operations for index calculations.

* Portable state vector simulator with GPU kernels generated by OpenMP.

* Benchmarks conducted on NERSC’s Perlmutter system illustrate its
competitiveness to other circuit simulation packages.

Pl: Roel Van Beeumen (Berkeley Lab)

ASCR Program: NERSC QIS@Perimutter

ASCR PM: Dr. Thomas Wong

Publication for this work: R. Van Beeumen, D. Camps, N. Mehta, “QCLAB++: Simulating quantum
circuits on GPUs,” arXiv:2303.00123 (2023), doi:10.48550/arXiv.2303.00123.

Code Developed: https://github.com/QuantumComputinglLab/qgclabpp

time [s]

time [s]

10?

10!

1073

QFT circuit

—— QCLAB++
----cirq (cuQuantum)
qibo (cupy) /

qibo (cuQuantum) e

16 18 20 22 24 26 28 30 32

103
10?
10t
10°

1071

1072 -

1073

qubits n

we- CPU (single)

—e— CPU (double)
= GPU (single)

—&— GPU (double)

16 18 20 22 24 26 28 30 32

qubits n

speedup

QCLAB++

GitHub:
QuantumComputingLab

/gclabpp

50
1] single

20 I double

30
20

10

(.
16 18 20 22 24 26 28 30 32

qubits n

QCLAB++: CPU versus GPU for QFT circuit (Perlimutter - NVIDIA A100
GPU): GPU kernels exhibit a perfect linear scaling on the loglog plot for
systems with more than 22 qubits. The CPU simulation exhibits less regular
scaling in the timings due to memory access effects, yielding speedup
factors of more than 40x.

U.S. DEPARTMENT OF OffICe Of

2 )
‘ ENERGY Science



https://doi.org/10.48550/arXiv.2303.00123
https://github.com/QuantumComputingLab/qclabpp
https://github.com/QuantumComputingLab/qclabpp

Al/ML Methods

22
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Machine Learning for Space Weather Mitigation

An ASCR - Office of Electricity Pilot Project
Contact: Pieter Ghysels

optimal load in the maximum loadability problem; the team is also working =TMATH
toward optimal blocker placement. o

Significance and Impact

Geomagnetic disturbances resulting from intense solar activity caused by
coronal mass ejections pose risks to the electrical grid by generating
geomagnetically induced currents (GICs). Optimal blocker placement will
significantly reduce the impact of this problem. This GNN-based machine
learning prediction approach results in high-quality solutions found in
shorter computation time than traditional solvers (e.g., Julia optimizers
such as PowerModelsGMD.jl).

Scientific Achievement B
A heterogeneous graph neural network (GNN) was developed to predict ) - -
ZRAPIDS/ S~

Technlcal Approach
Modeled AC and DC networks with various node and edge features. ‘o
* GNN predictive models for maximum loadability regression and b
for classification for GIC blocker placement.
* Found that training for the loadability problem on 300 perturbed input * The heuristic approach involves generating random perturbations on a given
hs is faster th h isi | inal h power grid and feeding those perturbations into one of the optimizers in the
grapns Is 1aster than heuristic solver on a singie grapn. PowerModelsGMD.jl package, which finds the optimal real ("pd") and reactive
* Used DeepHyper to optimize hyperparameters and improve accuracy. ("qd") power demands.
- « The machine learning approach on the bottom involves feeding the same
Pl: Pieter Ghysels, Berkeley Lab o power grid data into the heterogeneous GNN, passing through several
Collaborating Institutions: Office of Electricity, LANL, ORNL, UC Berkeley, ANL convolutional and Multi-Layer Perception (MLP) layers.
ASCR Program: RAPIDS/FASTMath . ' « The true values from the optimizer and the predicted values from the machine
ASCR PM: Randall Laviolette, Ceren Susut-Bennet, Lali Chatterjee learning model are then used to compute the loss to evaluate the model's

/\ performance.

“Los Alamos Berkeley ¥Ribce Argonne &

NATIONAL LABORATORY
UNIVERSITY OF CALIFORNIA
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GPTune autotuner: Bayesian optimization with Gaussian Process surrogate modeling

Younghyun Cho, Jim Demmel, Sherry Li, Yang Liu, Henrui Luo
-z z z z zZzZ©m BmBmmBmBBmBm  B0Bm9m9m9m9m9mmmmm ©O09m9m9m9m9m9m©m©O©©©©Om©0O0O©OmOm©mOm©m©©O©O©O0OmOmOmOm©©©©©O0O09090m0m9m9m9©O©©©©©090909090909m9m9©9©m©O©m©m©O©O©O©O©O©O©m©m©9©m©m©9O©m©m©m©O©9©9©9©m© 0 009090

Scientific Achievement

Optimization : min y(t, X), x :parameter configuration
X

= Applicable to any black-box software

Significance and Impact
Gaussian process (GP) models can act as surrogates for code
performance or first-principle physics for many expensive SciDAC and
ECP applications. Our work leverages multi-task and multi-fidelity GP
models to allow accurate surrogates.

Research Details

Features: multi-task, multi-objective, and multi-fidelity
Added multi-objective tuning features to allow memory/time tradeoff

Supported multi-task and transfer learning features to leverage
correlation between tuning tasks to improve model accuracy

History database for crowd-tuning

GPTune has been applied to Hypre, MFEM, STRUMPACK, SuperLU_DIST,

PLASMA, SLATE, ScaLAPACK, NIMROD, M3D-C1, IMPACT-Z, CNN, GCN,
kernel ridge regression, sketching-based linear square solvers.

Y. Cho, J. W. Demmel, X. S. Li, Y. Liu, and H. Luo, IEEE MCSoC, 2021
X. Zhu, Y. Liu, P. Ghysels, D. Bindal, and X. S. Li, SIAM PP, 2022
H. Luo, J.W. Demmel, Y. Cho, X. S. Li, and Y. Liu, JMLLR, submitted

0.73

Validation accuracy
o
~
N

0.71

Python (1 MPI)
Spawn desired MPI/OMP combinition
Spawn at most € MPIs
Parallel over LCM
* Spawn at most & MPIs
Parallel over tasks

(a) MPI spawning mode

- OpenTuner
- TPE
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- GPTune
i - GPTuneBand
0 5 10 15 20 25 30 35 40 45 50 55 60
Tuning cost
GPTuneBand beats other tuners for

tuning GCN on the Citeseer dataset
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xkcd.com

THIS 1S YOUR MACHINE LEARNING SYSTEM?

WHAT IF THE ANSLERS ARE WRONG? )

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT.




