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Why the nation needs national laboratories

§ Discovery science
§ Scientific solutions addressing national 

challenges, especially energy
§ Unique scientific capabilities 

§ User facilities

§ Managed, large research teams 
§ Important technologies with long, risky R&D 

paths
§ A diverse group of highly trained, creative, 

and committed scientists and engineers.



Berkeley Lab is one of the 17 U.S. Department of Energy (DOE) National 
Laboratories

The mission of the Energy Department is to ensure 
America’s security and prosperity by addressing its 

energy, environmental and nuclear challenges 
through transformative science and technology 

solutions.



Berkeley Lab Changes Science

Radiation Lab staff on the 
magnet yoke for the 60-inch 
cyclotron, 1939, including:
E. O. Lawrence
Edwin McMillan
Glenn Seaborg
Luis Alvarez
J. Robert Oppenheimer
Robert R. Wilson

Today, Berkeley Lab has:
Over 4000 employees
$1.1B in FY18 funding
13 associated Nobel 
prizes



https://www.lbl.gov/program/35-breakthroughs/

Discovered 16 
elements

Unmasked a 
dinosaur killer

Identified 
good and bad 

cholesterol

Fabricated the 
smallest 

machines

Turned 
windows into 
energy savers

Confirmed the 
Big Bang and 

discovered dark 
energy

Explained 
Photosynthesis

Revealed the 
secrets of the 

human genome

Berkeley Lab brings Science Solutions to the World

https://www.lbl.gov/program/35-breakthroughs/


Wang Hall 
Bldg 59

Bldg 50

ALS-Advanced 
Light Source

Molecular 
Foundry



Computing Sciences at Berkeley Lab in 2020
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Computational ResearchNERSC

Scientific Networking: ESnet

Computational 
Science

Computer 
Science

Applied Mathematics

Data Science & 
Technology

David  Brown

Inder Monga

Sudip Dosanjh

Jonathan 
Carter



NERSC at Berkeley Lab  Provides HPC and Data 
Resources for Science Research

Biology,  Environment Computing Materials, Chemistry, 
Geophysics

Particle Physics, 
Astrophysics

Largest funder of physical 
science research in U.S. 

Nuclear Physics Fusion Energy,
Plasma Physics



NERSC’s newest machine Cori supports both the HPC 
Workload and Data-Intensive Science

• Cray system with 9,300 Intel Knights Landing compute nodes 
– Self-hosted, (not an accelerator) manycore processor > 64 cores per node 
– On-package high-bandwidth memory at >400GB/sec

• Data Intensive Science Support
– 10 Haswell processor cabinets (Phase 1) to support data intensive 

applications 
– NVRAM Burst Buffer with 1.5PB of disk and 1.5TB/sec
– 28 PB of disk, >700 GB/sec I/O bandwidth in Lustre bandwith
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ESnet is a Unique Instrument for Science

– Connects 40 DOE sites to 140 other 
networks

– Growing twice as fast as commercial 
networks

– 50% of traffic is from “big data”

- First 100G continental scale network
- ANI dark fiber can be leveraged to 

develop and deliver 1 terabit
- Services based on user requirements: 

Bandwidth reservations, performance 
monitoring, research testbeds
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Unique capabilitiesESnet designed for large data



What are the questions driving research in computing?

Can we continue the growth in computing performance 
through more efficient architectures or new paradigms?

What mathematical models, algorithms and software are 
needed for increasingly complex scientific theories and 
experimental data sets?

Can we enable new modes of scientific discovery by applying 
advanced computing and networking to data from science 
experiments?

Limits of Chip Technology

Interfaces Key at Mesoscale

Large, Noisy CMB Data
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Future of computing: Extreme Heterogeneity? Quantum?
Can new logic devices give us 
beyond-Moore performance?

Multiple 
quantum 
device 
technologies 
at Berkeley

Experimentally 
implement chemical simulations on 
3-qubit platform

Develop model for small user facility to explore 
device technology

Siddiqi’s Quantum Circuit 

Quantum 
Chemistry

Fermi Hubbard 
at fractional 

doping

Synthetic gauge 
fields, Relativistic 

theories

Quantum Ising,
Bose-Hubbard,

Spin-Boson
THE HAMILTONIAN LANDSCAPE FOR QUANTUM SIMULATION

Quantum Simulation for Materials, Chemistry and 
Physics

Investigating 
alternative
devices 

Use Skirmion “bags” to 
act as information carriers 
for multi-valued logic device

Investigate energy efficient superconducting 
architectures where information is stored in 
magnetic flux quanta and transferred with Single 
Flux Quantum voltage pulses



What are the questions driving research in computing?

Can we continue the growth in computing performance 
through more efficient architectures or new paradigms?

What mathematical models, algorithms and software are 
needed for increasingly complex scientific theories and 
experimental data sets?

Can we enable new modes of scientific discovery by applying 
advanced computing and networking to data from science 
experiments?

Limits of Chip Technology

Interfaces Key at Mesoscale

Large, Noisy CMB Data



Transforming how we compute: 
“smart” math, numerics, HPC: gives unprecedented capability

• Smart math leads to science not possible before
– Use mathematical properties to build better simulation 

models
– Simulation at previously inaccessible scales
– Exploit matrix structure for faster linear algebra

• Advanced numerical methodology for better 
results
– High-order discretizations
– Projection methodology
– Adaptive mesh refinement– resolution where its needed
– Surrogate optimization methods

• AMReX framework enables HPC solutions
– Over 100x increase in throughput 

Numerical simulation emissions in a low 
swirl burner fueled by hydrogen

MAESTRO simulation near ignition showing 
flow from center of star and region of high 
energy generation
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The Advanced Light Source (ALS) hosts dozens of different experiments and 
end station detectors



Data-driven scientific discovery requires integration of 
modeling, simulation, analysis, data management

• Example: 21st Century 
Cosmology:
– Tight collaboration between 

astrophysicists and computational 
scientists to develop new 
technologies for cosmological data 
analysis

– Analysis & simulation of 100s of 
TeraBytes of data from ground-
and space-based observations

– Modeling & simulation of 
supernovae and large-scale 
structure formation

Large Scale Structure simulations 
of cluster formation in the early 
universe

Hydro simulation of a flame front 
in a thermonuclear supernova 
explosion

Palomar Transient Factory 
data-analysis sky-coverage 
map for the first 3 years of the project

Cosmic Microwave Background 
Radiation data from Planck



Machine Learning enables new scientific discoveries from massive data sets

• Projects that advance the state-of-art in machine learning with ties to science

Automated detection and analysis of particle beams in laser-plasma accelerator simulations 375

(a) (b)

Fig. 5. Comparison of particle selection with/without MVEE: extracting the orientation and
the axes of an enclosing ellipse from (a) produces (b), increasing the number of particles from
173 to 263. Colors indicate the density of particles, using only (x,y)-coordinates, and black
dots show potential particles to belong to the beam, according to the different methods.

maximum (beam candidate region) per time step. In addition, this is a way of accruing more
samples and detecting secondary beams when these are almost as prominent as the primary
beam, associated to the maximum of f .

During the searching for values that are approximately equal to max( f ), we keep not only
the maximum, but all bins where f ≥ u ∗ max( f ), where u is an uncertainty or tolerance pa-
rameter, here empirically set to 0.85. While this value enables the detection of the main and
the secondary beams (when present), lower values of u could be used to control the amount
of particles to be selected at a lower accuracy of beam position. From this point, we refer to
the subset of particles conditioned to u ∗ max( f ) and its adjacency, calculated for each time
step, as “beam candidates”.

Figure 4 (top) presents projections of Figure 3.b with their calculated beam candidates em-
phasized in red. These are the result of our first attempt to improve particle selection by using
an algorithm known as minimum volume enclosing ellipsoid as in Khachiyan & Todd (1993),
which is able to enclose previously selected particles and to include others based on a geo-
metrically defined polytope. Figure 5 illustrates the algorithm when applied to LWFA data,
showing the selected particles as black dots; these particles are not in the most dense region
(red) once the colors refers to (x,y)-density calculation. When including compactness in px,
the most dense region happens further ahead. As distinct from calculating center of mass
and forcing an ad hoc diameter or semi-major/minor axes, the minimum volume enclosing
ellipsoid (MVEE) algorithm [Khachiyan & Todd (1993); Kumar & Yildirim (2005); Moshtagh
(2009)] takes the subset of points and prescribes a polytope model to extrapolate a preliminary
sub-selection to other particles likely to be in the bunch. The MVEE algorithm is a semidefinite
programming problem and consists of a better approximation to the convexity of subsets of

www.intechopen.com

Identifying particle 
beams in laser 
plasma simulations

Identifying 
hurricanes

Clustering genes and 
finding networks

Detecting neutrinos

Image analysis in 
cosmology and 
light sources

Particle simulations: replace 
with Generative Adversarial 
Networks

Brain 3D model 
reconstruction

Decision support for 
energy infrastructure

Figure 7: Hourly averaged actual usage is shown on the left. And hourly averaged predicted usage is
shown on the right. Triangles markers show the averaged temperature. As presented in Tables 4 and 5,
the predicted usage shows higher values than the actual usage, demonstrating that differing pricing policies
affect household usage patterns.

accurate short-term forecasts, our baseline model aims to capture intraday characteristics that persists for
years. Our tests show that one of the boosting technique, GTB, could incorporate important features such
as outdoor temperature and capture the core user behavior. For example, the baseline model from GTB
accurately reproduces the lag between the daily peak temperature and peak electricity usage.

The ultimate objective of our work is to evaluate the effectiveness of the different pricing schemes.
The new baseline is an important component. This preliminary work demonstrate that new approach is
promising, but additional work is needed to evaluate the effectiveness of this approach. For example, we
should to re-evaluate the features used in the regression models and systematically measure their impact.
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Modeling human 
behavior



Welcome to Berkeley Lab Computing Sciences!


