
Surrogate Optimization of
HPC Applications

Juliane Mueller
Center for Computational Sciences and Engineering

JulianeMueller@lbl.gov
https://optimization.lbl.gov/

Summer 2020

http://cs.lbl.gov/careers/summer-student-program/computing-sciences-summer-students-2018-talks-and-events/#anchor-Jul19
mailto:JulianeMueller@lbl.gov
https://optimization.lbl.gov/

The takeaways from today’s talk

1. A general understanding of what optimization is all about
2. An understanding of the importance of choosing the right

tools (solvers) for your optimization problem
3. Optimization is needed in pretty much all science domains

Before we talk about black-box optimization…

What is optimization?
• We encounter optimization whenever we want to find the best of something, e.g.,

• maximize the Nonaka Metric (calories per dollar spent)

Andy Nonaka

Before we talk about black-box optimization…

What is optimization?
• We encounter optimization whenever we want to improve something, e.g.,

• Get form A to B in the fastest way possible

Before we talk about black-box optimization…

What is optimization?
• We encounter optimization whenever we want to improve something, e.g.,

• Get form A to B in the fastest way possible
• Get form A to B in the shortest way possible

Find the “best” of something

Before we talk about black-box optimization…

What is optimization?
• We encounter optimization whenever we want to improve something, e.g.,

• Get form A to B in the fastest way possible
• Get form A to B in the shortest way possible

Formulate it as an optimization
problem:
• Let 𝑑𝑑 denote the distance between A and B
• 𝑑𝑑 depends on which roads (𝑥𝑥) you take, e.g.,

𝑥𝑥𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢.𝑎𝑎𝑎𝑎𝑎𝑎. = 0 if we do not go University Ave.,
𝑥𝑥𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢.𝑎𝑎𝑎𝑎𝑎𝑎. = 1 if we do go University Ave

• Find the values for 𝑥𝑥 such that
min
𝑥𝑥
𝑑𝑑(𝑥𝑥)

Some terminology...

min
𝑥𝑥
𝑑𝑑(𝑥𝑥) Objective function

Optimization variables 𝑥𝑥 ∈ Ω ⊆ ℝ𝑛𝑛
Variable domain,
𝑛𝑛 is the number of
variables

𝑔𝑔𝑗𝑗 𝑥𝑥 ≤ 0, 𝑗𝑗 = 1, … , 𝐽𝐽 Inequality constraints

ℎ𝑘𝑘 𝑥𝑥 = 0, 𝑘𝑘 = 1, … ,𝐾𝐾 Equality constraints

A simple example
Maximize the volume of a box by
cutting away squares from each
corner of a 25x15 inch rectangle and
folding up the sides

• 𝑥𝑥 is the optimization variable

• Objective function:
Volume = width * length * height:
𝑉𝑉(𝑥𝑥) = 15 − 2𝑥𝑥 25 − 2𝑥𝑥 𝑥𝑥

• Our constraints:
• 𝑥𝑥 ≥ 0
• 15 − 2𝑥𝑥 ≥ 0 → 𝑥𝑥 ≤ 7.5
• 25 − 2𝑥𝑥 ≥ 0 → 𝑥𝑥 ≤ 12.5

𝑥𝑥
𝑥𝑥

Our optimization problem is then:
max𝑉𝑉(𝑥𝑥)

0 ≤ 𝑥𝑥 ≤ 7.5

Solve it by computing the derivative of 𝑉𝑉(𝑥𝑥), setting it to 0 and
finding 𝑥𝑥

25 in

15 in

Optimization problems arise practically everywhere

Airfoil design:
• Objective: maximize lift, minimize drag
• Variables: geometry, see figure

Structural optimization:
• Objective: minimize weight
• Variables: geometry
• Constraint: displacement under load

Optimization problems arise practically everywhere

Traveling salesman problem:
• Objective: minimize the distance traveled
• Variables: which links to traverse
• Constraints: each city must be visited, finish where you started

Optimization problems arise practically everywhere
Design of smart buildings:
• Objective: minimize energy demand
• Variables: building specifics (wall

thickness, heating/cooling
schedules)

• Constraints: energy use intensity

Optimization problems arise practically everywhere

Groundwater remediation:
• Objective: minimize cleanup cost
• Variables: the number and location of treatment wells, pumping strategy
• Constraints: remaining contaminant

Optimization problems come in many different flavors
We differentiate optimization problems based on their characteristics

• What type of variables do we have?
• Continuous – integer – mixed-integer – binary – categorical

• What kind of objective function do we have?
• Differentiable – analytic – simulation – convex – multimodal

• How many objective functions?
• One
• Several (multi-objective optimization)

• What kind of constraints do we have?
• Equality – inequality – bound – simulation

Characteristics determine which solver to use
Optimization methods are developed for specific types of problems, for
example:

• Sequential quadratic programming – for constrained nonlinear optimization
• Simplex algorithm – for linear programs
• Steepest descent/gradient descent – for nonlinear problems with derivatives
• Heuristics – for problems without derivative information (Tabu search, simulated

annealing, genetic algorithms)
• Surrogate model algorithms – for problems that involve evaluating an expensive

simulation

Selection of the optimization method requires a good
understanding of the problem at hand

Optimization algorithms are iterative methods
Gradient based methods go downhill (minimization):

Repeatedly evaluate 𝑓𝑓(𝑥𝑥) to find
the minimum

What’s so special about the problems I work on?

• The objective function involves a computer simulation
• No analytic description of the objective function

(black-box)
• No gradient information

The problems I work on have some nasty characteristics:

What’s so special about the problems I work on?

• The objective function involves a computer simulation
• No analytic description of the objective function

(black-box)
• No gradient information

• The simulation is time consuming

The problems I work on have some nasty characteristics:

• We cannot do thousands of evaluations of 𝑓𝑓 𝑥𝑥
• We cannot approximate gradients

What’s so special about the problems I work on?

• The objective function involves a computer simulation
• No analytic description of the objective function

(black-box)
• No gradient information

• The simulation is time consuming
• Multimodality

The problems I work on have some nasty characteristics:

Goal: Find the global optimum within as
few evaluations of 𝑓𝑓 𝑥𝑥 as possible

Applications arise in numerous science areas…
Practically anytime a simulation is involved

Laboratory observation:
rod stabilized flame

Computer
simulation

• “Tweak” (optimize) the simulation’s variables such that the error
between observed and simulated data is minimized

Compare

Applications arise in numerous science areas…
Practically anytime a simulation is involved

Engine simulation Optimization

Down-select
fuels to try in lab

Laboratory experiment

Quantity of interest

Applications arise in numerous science areas…
Practically anytime evaluating the objective function is expensive

Optimization variables describe the architecture
(=hyperparameters)
• # layers, nodes, epochs
• Batch size, dropout rate
• Anything else problem specific

𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝐷𝐷𝑣𝑣𝑣𝑣𝑣𝑣

Future predictions

E.g. Predict future
groundwater levels
based on historic data

Groundwater

Temperature
Precipitation

River discharge

Training a single DL model (a single architecture)
can be very time consuming  only try very few
architectures to find the best

Before we talk about how to solve these difficult
problems, let’s talk about how to not solve them

Variable sweeps (also grid sampling)
• Divide each variable’s range into equidistant intervals  obtain a grid
• Evaluate your function at each grid point and declare the best point optimal

In one dimension In two dimensions

What’s the problem with this approach?
• It does not scale well:

• For one variable, with 10 points  10 evaluations
• For two variables, with 10 points each  10x10 evaluations
• For 𝑑𝑑 variables, with 10 points each  10𝑑𝑑 points
• For example, 10 variables = 1010 evaluations, 1hour per evaluation = 10’000’000’000 hours or

416’666’666 days or 1’141’552 years

In three dimensions

Don’t use this for
expensive evaluations

Random sampling

• Randomly select a bunch of points from the variable space and evaluate
• Declare the best point as your optimum

Drawback:
• How many points do you evaluate? Which distribution?
• No mechanism to sample interesting regions of the variable space more thoroughly

Don’t use this for optimization

• Manually adjust variables’ values
• Human is often the slowest element in

optimization
• Humans are generally not good at high-

dimensional variable optimization

• Expert’s intuition can be helpful
• Often results in local search, missing better

(unexpected solutions)

Tuning “by hand” and using intuition

Don’t do this if you ever want to graduate

Don’t use optimization methods that were not
developed for the type of problem you have
• Heuristics (GA’s, SA,…):

• Too inefficient for expensive simulations

• Local search methods for multi-modal problems:
• Finds only local optimum

• Methods relying on gradient information:
• Not useful if you don’t have gradient

Takeaway: It is always worth it to invest time in searching for the appropriate
optimization algorithm for your specific problem

How to solve our difficult optimization problems?

Computationally cheap surrogate models to
approximate the expensive function:

𝑓𝑓 𝑥𝑥 = 𝑠𝑠 𝑥𝑥 + 𝑒𝑒(𝑥𝑥)

• 𝑠𝑠(𝑥𝑥) could be a
• polynomial regression model

𝑓𝑓 𝑥𝑥

𝑥𝑥

• 𝑠𝑠(𝑥𝑥) could be a
• polynomial regression model
• Radial basis function model

Computationally cheap surrogate models to
approximate the expensive function:

𝑓𝑓 𝑥𝑥 = 𝑠𝑠 𝑥𝑥 + 𝑒𝑒(𝑥𝑥)

• 𝑠𝑠(𝑥𝑥) could be a
• polynomial regression model
• Radial basis function model
• Kriging model (Gaussian process)

𝑓𝑓 𝑥𝑥

𝑥𝑥

Computationally cheap surrogate models to
approximate the expensive function:

𝑓𝑓 𝑥𝑥 = 𝑠𝑠 𝑥𝑥 + 𝑒𝑒(𝑥𝑥)

How does it work?
• Before fitting a surrogate model, we need some data

• Use an initial experimental design and we evaluate the expensive simulation

How does it work?
• Now we have enough information to fit a surrogate model

• We use radial basis functions, but could be anything, really

How does it work?
• We use the surrogate model to select a new point for evaluation

Our new evaluation

How does it work?
• We use the new piece of information to update the surrogate model

How does it work?
• Select a new point and evaluate the expensive simulation

Our new evaluation

How does it work?
• Update the surrogate model with the new piece of data

Initial experimental design

Expensive function
evaluation(s)

Fit/Update surrogate model

Solve auxiliary optimization
problem on surrogate

New point(s)

• Latin hypercube, Sobol sequence,…

• Radial basis function, Gaussian process, Deep
learning model

• Maximize expected improvement; optimize tradeoff
between predicted performance and distance;
minimum of surrogate model

• STOP when you reached your function
evaluation or compute budget

• Here you call the simulation or do a time intensive
experiment

This is where most of the research happens:
develop strategies for selecting new points

We keep doing this until we run out of time

• If we have about 100 hours to find a solution, and one simulation run takes an hour,
that means we get at most 100 simulation evaluations done

• The best solution found at the end of the optimization is ”the best we can do with
the limited resources we have”

• Is it globally optimal? – Maybe.
• Is it locally optimal? – Sometimes.
• Is it better than what the scientist used before? – Most likely.

or NaN

An example where we used this method
(successfully) – Combustion simulation
• Simulation of gas-phase chemical combustion
• Modeling involves fluid conservation laws, thermodynamic relationships, diffusive

transport, chemical kinetics
• Minimize the error between simulation and observation

The simulation may fail to complete

Combustion application and failing simulations

• With failing simulations – how do we build our surrogate model??

Here is where my next
evaluation should be

Combustion application and failing simulations

• With failing simulations – how do we build our surrogate model??

NaN

But the evaluation fails

I cannot update my surrogate model !

Introduce a constraint to deal with failed simulations

• Need some trickery to deal with this (1-dimensional illustration):

• Build a function that predicts how likely it is that a variable vector will lead to
successful evaluation

1

0
𝑥𝑥

𝑠𝑠𝑔𝑔 𝑥𝑥
𝑔𝑔 𝑥𝑥 = �1, if 𝑓𝑓(𝑥𝑥) evaluates successfully

0, otherwise

• Use a piecewise linear
approximation 𝑠𝑠𝑔𝑔 𝑥𝑥 to predict
evaluability at every point 𝑥𝑥

Iteratively increase the evaluability threshold

• Need some trickery to deal with this:

• Define a threshold

• And require 𝑠𝑠𝑔𝑔 𝑥𝑥 ≥ 𝑡𝑡𝑛𝑛

𝑥𝑥

1

0

𝑡𝑡𝑛𝑛

𝑡𝑡𝑛𝑛 =
log(𝑛𝑛 − 𝑛𝑛0 + 1)
log(𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑛𝑛0)

𝑠𝑠𝑔𝑔 𝑥𝑥

𝑡𝑡𝑛𝑛 dynamically increases as the
number of evaluations 𝑛𝑛 grows

Optimizing the architecture of Deep Learning Models by
bilevel optimization with integers

min
𝜃𝜃,𝑤𝑤∗ 𝑙𝑙(𝜃𝜃,𝑤𝑤∗;𝐷𝐷𝑣𝑣𝑣𝑣𝑣𝑣)

𝑠𝑠. 𝑡𝑡.𝜃𝜃 ∈ Ω

𝑤𝑤∗ ∈ arg min
𝑤𝑤∈𝑊𝑊

𝐿𝐿(𝑤𝑤;𝜃𝜃,𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)

𝜃𝜃 describe the architecture (=hyperparameters)
• # layers, nodes, epochs
• Batch size, dropout rate
• Anything else problem specific

Surrogate model optimizer

SGD, ADAM,…

Our approach yields excellent results for predicting
groundwater in California

Historic data
• Temperature
• Precipitation
• River discharge
• Groundwater levels
• Time of year

HPO of deep learning
model (tried CNN,
MLP, LSTM, RNN)

Future predictions for
• Groundwater levels

Inform with
• Temperature
• Precipitation
• Time of year

𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐷𝐷𝑣𝑣𝑣𝑣𝑣𝑣
Future predictions

With CRD and
EESA at LBNL

Mueller et al., arXiv:1908.10947, 2020

Constrained optimization to discover new fuels
Ongoing, with Lapointe

and McNenley @LLNL

New fuel composition

�
𝑖𝑖

𝑥𝑥𝑖𝑖 = 1
RON constraint
prediction (ML)

80 ≤ 𝑅𝑅𝑅𝑅𝑅𝑅 𝑥𝑥 ≤ 98.5

Performance measure
(robustness, load range)

ZeroRK
chemistry

solver

feasible

infeasible
Stop

Gaussian process surrogate for constraint:
𝑠𝑠𝑔𝑔 𝑥𝑥 = 𝑅𝑅𝑅𝑅𝑅𝑅 𝑥𝑥 + 𝑒𝑒𝑔𝑔(𝑥𝑥)

Gaussian process surrogate for objective:
𝑠𝑠𝑓𝑓 𝑥𝑥 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑥𝑥 + 𝑒𝑒𝑓𝑓(𝑥𝑥)

Sampling strategies are based on
ideas from expected improvement,
expected violation, and probability
of feasibility

Different fuel blends yield similar performance
• Solve 2 different optimization problems (max load range; max robustness)
• 5 trials with the algorithm (bc algorithm is stochastic)
• 9 fuel components (5 fuel groups)

• Different fuel compositions with similar performance
• High amounts of olefins, low /no naphthenes, yield

highest robustness

• Convergence plot: higher is better
• Old method = genetic algorithm
• New method = Gaussian process surrogate model

algorithm

Other applications
• Reliability redundancy optimization – maximize system reliability
• Global climate model – calibrate parameters related to CH4 model
• Airfoil design – maximize lift and minimize drag simultaneously
• Watershed management – retire agricultural lands to reduce Ph runoff
• Particle physics – match simulations with observations
• Engine efficiency – design better engines and better fuels
• Renewable energies – maximize energy generated by kites, hydropower
• Scheduling – how to assemble products in line most efficiently
• And many more….

Bottomline: optimization is needed almost everywhere
Study optimization!

What did you learn today?

• What is the goal of doing optimization?

• Why do I not want to use grid sampling for objective functions that take a long
time to evaluate?

• What are example applications that can/should make use of optimization?

Some examples where we used this method
(successfully) – Materials science/Chemistry

• Use X-ray standing wave to determine the thicknesses of the layers (d’s and r’s)
• Minimize errors between simulation (graphs) to observation (black dots)

Some examples where we used this method
(successfully) – Cloud simulations
• Simulate how clouds form
• Compare simulations to observation data

sets (minimize error)

LES = benchmark
DEF = default

OPTS, OPTD = optimizations

Get as close to the black line as possible

	Surrogate Optimization of HPC Applications
	The takeaways from today’s talk
	Before we talk about black-box optimization…
	Before we talk about black-box optimization…
	Before we talk about black-box optimization…
	Before we talk about black-box optimization…
	Some terminology...
	A simple example
	Optimization problems arise practically everywhere
	Optimization problems arise practically everywhere
	Optimization problems arise practically everywhere
	Optimization problems arise practically everywhere
	Optimization problems come in many different flavors
	Characteristics determine which solver to use
	Optimization algorithms are iterative methods
	What’s so special about the problems I work on?
	What’s so special about the problems I work on?
	What’s so special about the problems I work on?
	Applications arise in numerous science areas…
	Applications arise in numerous science areas…
	Applications arise in numerous science areas…
	Before we talk about how to solve these difficult problems, let’s talk about how to not solve them
	Variable sweeps (also grid sampling)
	Random sampling
	Tuning “by hand” and using intuition
	Don’t use optimization methods that were not developed for the type of problem you have
	How to solve our difficult optimization problems?
	Computationally cheap surrogate models to approximate the expensive function:
	Computationally cheap surrogate models to approximate the expensive function:
	Computationally cheap surrogate models to approximate the expensive function:
	How does it work?
	How does it work?
	How does it work?
	How does it work?
	How does it work?
	How does it work?
	Slide Number 37
	We keep doing this until we run out of time
	An example where we used this method (successfully) – Combustion simulation
	Combustion application and failing simulations
	Combustion application and failing simulations
	Introduce a constraint to deal with failed simulations
	Iteratively increase the evaluability threshold
	Optimizing the architecture of Deep Learning Models by bilevel optimization with integers
	Our approach yields excellent results for predicting groundwater in California
	Constrained optimization to discover new fuels
	Different fuel blends yield similar performance
	Other applications
	What did you learn today?
	Some examples where we used this method (successfully) – Materials science/Chemistry
	Some examples where we used this method (successfully) – Cloud simulations

