
Efficient Scientific Data Management on Supercomputers

Suren Byna
Staff Scientist

Scientific Data Management Group
Data Science and Technology Department

Lawrence Berkeley National Laboratory

▪Simulations

▪Experiments

▪Observations

2

Scientific Data - Where is it coming from?

3

Life of scientific data

Generation
In situ analysis

Processing

Storage

Analysis

Preservation (archive)

Sharing

Refinement

4

Supercomputing systems

5

Supercomputer architecture - Cori

Cori system

6

Supercomputer architecture - Summit

Source of the images in this slide: OLCF web pages

▪Data representation
– Metadata, data structures, data models

▪Data storage
– Storing and retrieving data and metadata to file systems fast

▪Data access
– Improving performance of data access that scientists desire

▪Facilitating analysis
– Strategies for supporting finding the meaning in the data

▪Data transfers
– Transfer data within a supercomputing system and between

different systems

7

Scientific Data Management in supercomputers

▪Data representation
– Metadata, data structures, data models

▪Data storage
– Storing and retrieving data and metadata to file systems fast

▪Data access
– Improving performance of data access that scientists desire

▪Facilitating analysis
– Strategies for supporting finding the meaning in the data

▪Data transfers
– Transfer data within a supercomputing system and between

different systems

8

Scientific Data Management in supercomputers

▪Storing and retrieving data – Parallel I/O and HDF5
– Software stack
– Modes of parallel I/O
– Intro to HDF5 and some tuning I/O of exascale applications

▪Autonomous data management system
– Proactive Data Containers (PDC) system
– Metadata management service
– Data management service

9

Focus of this presentation

Trends – Storage system transformation

10

IO Gap

Memory

Parallel file system
(Lustre, GPFS)

Archival Storage
(HPSS tape)

IO Gap

Shared burst buffer

Memory

Parallel file system
(Lustre, GPFS)

Archival Storage
(HPSS tape)

Memory

Parallel file system
(on Theta)

Archival storage
(HPSS tape)

Node-local storage

Conventional Shared burst buffer
Eg. Cori @ NERSC

Node-local, Eg. Theta
(ALCF), Summit (OLCF)

Center-wide storage
(on Summit)

• IO performance gap in HPC storage is a significant bottleneck
because of slow disk-based storage

•SSD and new memory technologies are trying to fill the gap, but
increase the depth of storage hierarchy

Memory

Parallel file system

Archival storage
(HPSS tape)

Node-local storage

Upcoming

Campaign / center-
wide storage

NVM-based shared
storage

Applications

High Level I/O Library (HDF5, NetCDF, ADIOS)

I/O Middleware (MPI-IO)

I/O Forwarding

Parallel File System (Lustre, GPFS,..)

I/O Hardware

12

Parallel I/O software stack

 I/O Libraries
– HDF5 (The HDF Group) [LBL, ANL]
– ADIOS (ORNL)
– PnetCDF (Northwestern, ANL)
– NetCDF-4 (UCAR)

• Middleware – POSIX-IO, MPI-IO
(ANL)

• I/O Forwarding

• File systems: Lustre (Intel), GPFS
(IBM), DataWarp (Cray), …

 I/O Hardware (disk-based, SSD-
based, …)

▪Types of parallel I/O
• 1 writer/reader, 1 file
• N writers/readers, N files

(File-per-process)
• N writers/readers, 1 file
• M writers/readers, 1 file

– Aggregators
– Two-phase I/O

• M aggregators, M files (file-
per-aggregator)

– Variations of this mode

13

Parallel I/O – Application view

P0 P1
Pn-

1
Pn

…

file.0

1 Writer/Reader, 1 File

P0 P1
Pn-

1
Pn

…

file.0

n Writers/Readers, n Files

file.1 file.n-1 file.n

P0 P1
Pn-

1
Pn

…

n Writers/Readers, 1 File
File.1

P0 P1
Pn-

1
Pn

…

file.0

M Writers/Readers, M Files

file.m

P0 P1
Pn-

1
Pn

…

M Writers/Readers, 1 File
File.1

▪ Parallel file systems
–Lustre and Spectrum Scale (GPFS)

▪ Typical building blocks of
parallel file systems
–Storage hardware – HDD or SSD

RAID
–Storage servers (in Lustre, Object

Storage Servers [OSS], and object
storage targets [OST]

–Metadata servers
–Client-side processes and interfaces

▪ Management
–Stripe files for parallelism
–Tolerate failures

14

Parallel I/O – System view

OST 0 OST 1 OST 2 OST 3

File

File

Physical view on a parallel file system

Logical view

Communication
network

WHAT IS HDF5?

Applications
High Level I/O Library (HDF5, NetCDF,

ADIOS)

I/O Middleware (MPI-IO)

I/O Forwarding

Parallel File System (Lustre, GPFS,..)

I/O Hardware

What is HDF5?

• HDF5 Hierarchical Data Format, v5

• Open file format
– Designed for high volume and complex data

• Open source software
– Works with data in the format

• An extensible data model
– Structures for data organization and specification

HDF5 is like …

HDF5 is designed …

▪ for high volume and / or complex data

▪ for every size and type of system – from cell phones to
supercomputers

▪ for flexible, efficient storage and I/O

▪ to enable applications to evolve in their use of HDF5 and to
accommodate new models

▪ to support long-term data preservation

HDF5 Overview

▪ HDF5 is designed to organize, store, discover, access,
analyze, share, and preserve diverse, complex data in
continuously evolving heterogeneous computing and
storage environments.

▪ First released in 1998, maintained by The HDF Group

▪ Heavily used on DOE supercomputing systems

“De-facto standard for scientific computing” and integrated into every major
scientific analytics + visualization tool

Top library used at NERSC by
the number of linked instances
and the number of unique users

HDF5 in Exascale Computing Project

19 out of the 26 (22 ECP + 4
NNSA) apps currently use or
planning to use HDF5

HDF5 Ecosystem

Fi
le

 F
or

m
at

Li
br

ar
y

D
at

a
M

od
el

D
oc

um
en

ta
ti

on
…

Supporters

…

To
ol

s

HDF5 DATA MODEL

HDF5 File

lat	lon	temp
12 | 23 | 3.1
15 | 24 | 4.2
17 | 21 | 3.6An HDF5 file is a

container that
holds data objects.

HDF5 Data Model

File

Dataset Link

Group

Attribute
Dataspace

DatatypeHDF5
Objects

HDF5 Dataset

• HDF5 datasets organize and contain data elements.
• HDF5 datatype describes individual data elements.
• HDF5 dataspace describes the logical layout of the data elements.

Integer: 32-bit, LE

HDF5 Datatype

Multi-dimensional array of
identically typed data elements

Specifications for single data
element and array dimensions

3

Rank

Dim[2] = 7

Dimensions

Dim[0] = 4
Dim[1] = 5

HDF5 Dataspace

HDF5 Dataspace

• Describe individual data elements in an HDF5
dataset

• Wide range of datatypes supported
• Integer
• Float
• Enum
• Array
• User-defined (e.g., 13-bit integer)
• Variable-length types (e.g., strings, vectors)
• Compound (similar to C structs)
• More … Extreme Scale Computing Argonne

HDF5 Dataspace

Two roles:
Dataspace contains spatial information
• Rank and dimensions
• Permanent part of dataset

definition

Partial I/0: Dataspace describes application’s data buffer and
data elements participating in I/O

Rank = 2
Dimensions = 4x6

Rank = 1
Dimension = 10

HDF5 Dataset with a 2D array

Dataspace: Rank = 2
Dimensions = 5 x 3

Datatype: 32-bit Integer

3

5

12

HDF5 Groups and Links

lat	lon	temp
12 | 23 | 3.1
15 | 24 | 4.2
17 | 21 | 3.6

Experiment Notes:
Serial Number: 99378920
Date: 3/13/09
Configuration: Standard 3

/

SimOutViz

HDF5 groups
and links
organize
data objects.

Every HDF5 file
has a root group

Parameters
10;100;1000

Timestep
36,000

HDF5 Attributes

• Typically contain user metadata
• Have a name and a value
• Attributes “decorate” HDF5 objects
• Value is described by a datatype and a dataspace
• Analogous to a dataset, but do not support partial

I/O operations
• Nor can they be compressed or extended

HDF5 Home Page
HDF5 home page: http://www.hdfgroup.org/solutions/hdf5/
• Latest release: HDF5 1.10.5 (1.12 coming soon)
HDF5 source code:

• Written in C, and includes optional C++, Fortran, and Java APIs
– Along with “High Level” APIs

• Contains command-line utilities (h5dump, h5repack, h5diff, ..) and
compile scripts

HDF5 pre-built binaries:
• When possible, include C, C++, Fortran, Java and High Level libraries.

–Check ./lib/libhdf5.settings file.
• Built with and require the SZIP and ZLIB external libraries

https://www.hdfgroup.org/solutions/hdf5/

HDF5 Software Layers & Storage

HDF5 File
Format File Split

Files

File on
Parallel
Filesystem

Other

I/O Drivers

Virtual File
Layer Posix

I/O
Split
Files MPI I/O Custom

Internals Memory
Mgmt

Datatype
Conversion Filters Chunked

Storage
Version

Compatibility
and so on…

Language
Interfaces

C, Fortran, C++

HDF5 Data Model Objects
Groups, Datasets, Attributes, …

Tunable Properties
Chunk Size, I/O Driver, …

HD
F5

 L
ib

ra
ry

St
or

ag
e

netCDF-4High Level
APIs

HDFviewAp
ps h5dumpH5Part

API
… …VPIC…

The General HDF5 API

▪ C, Fortran, Java, C++, and .NET bindings
– Also: IDL, MATLAB, Python (H5Py, PyTables), Perl, ADA, Ruby, …

▪ C routines begin with prefix: H5?
? is a character corresponding to the type of object the function acts on

Example Functions:

H5D : Dataset interface e.g., H5Dread
H5F : File interface e.g., H5Fopen
H5S : dataSpace interface e.g., H5Sclose

The HDF5 API

▪For flexibility, the API is extensive
 300+ functions

▪This can be daunting… but there is hope
 A few functions can do a lot
 Start simple
 Build up knowledge as more features are needed

Victorinox
Swiss Army
Cybertool
34

General Programming Paradigm

▪Object is opened or created
▪Object is accessed, possibly many times
▪Object is closed

▪Properties of object are optionally defined
 Creation properties (e.g., use chunking storage)
 Access properties

Basic Functions

H5Fcreate (H5Fopen) create (open) File

H5Screate_simple/H5Screate create dataSpace

H5Dcreate (H5Dopen) create (open) Dataset

H5Dread, H5Dwrite access Dataset

H5Dclose close Dataset

H5Sclose close dataSpace

H5Fclose close File

Other Common Functions

DataSpaces: H5Sselect_hyperslab (Partial I/O)
H5Sselect_elements (Partial I/O)
H5Dget_space

DataTypes: H5Tcreate, H5Tcommit, H5Tclose
H5Tequal, H5Tget_native_type

Groups: H5Gcreate, H5Gopen, H5Gclose

Attributes: H5Acreate, H5Aopen_name, H5Aclose
H5Aread, H5Awrite

Property lists: H5Pcreate, H5Pclose
H5Pset_chunk, H5Pset_deflate

HDF5 performance on supercomputers

▪ A plasma physics simulation, using VPIC code
– I/O kernel with MPI processes, where each process writes 8 variables

of 8 M particles

Applications: EQSIM

EQSIM is a high performance, multidisciplinary simulation for regional-
scale earthquake hazard and risk assessments.

Applications: EQSIM

Read material properties from Sfile (HDF5) and Rfile
(native), with varying number of MPI ranks.

Write time-series data with different number of record stations to Lustre and
burst buffer, on Cori with 64 nodes.

Applications: Warp and QMCPACK

▪ WarpX is an advanced
electromagnetic Particle-In-Cell code

▪ Applied file system and MPI-IO level
optimizations to achieve good HDF5
I/O performance (uses h5py)

Warp-IO

Default
Lustre tuning

h5py bug fix
+

Lustre tuning

• QMCPACK, is a modern high-
performance open-source Quantum
Monte Carlo (QMC) simulation code

• HDF5 optimizations in file close and
fixing a bug improved I/O performance

QMCPACK

Applications: AMReX-based applications

▪ AMReX - SW framework for building
massively parallel block- structured
adaptive mesh refinement (AMR)
applications
• Combustion, accelerator physics, carbon

capture, cosmology apps from ECP use
this framework

▪ HDF5: Integrated HDF5-based I/O
functions for reading and writing plot files
and particle data

Liquid jet in supersonic flow

On Cori at NERSC

Facilities: Astrophysics and Neuroscience codes

▪ Supporting any I/O issue related tickets at facilities
▪ The following are astrophysics and neurological disorder

pipelines that experienced high I/O overhead
▪ Used performance introspection interfaces of HDF5 to identify

bottlenecks

Athena astrophysics code
40% of execution time in I/O, using HDF5 profiling tools
identified a large number of concurrent writes; with
collective I/O, reduced I/O portion to less than 1% of
the execution time.

Neurological Disorder I/O Pipeline
Identified that h5py interface was prefilling HDF5
dataset buffers unnecessarily and avoiding that
improved performance by 20X (from 40 min to 2 min)

46

Autonomous data management using object
storage – Proactive Data Containers (PDC)

Storage Systems and I/O: Current status

47

Hardware Software

High-level lib
(HDF5, etc.)

IO middleware
(POSIX, MPI-IO)

IO forwarding

Parallel file
systems

Applications

Usage

… Data (in memory)

IO software

… Files in file system

• Challenges
– Multi-level hierarchy complicates data movement, especially if user has

to be involved
– POSIX-IO semantics hinder scalability and performance of file systems

and IO software

Tune middleware
Tune file systems

Memory

Parallel file system

Archival storage
(HPSS tape)

Shared burst buffer

Node-local storage

Campaign storage

HPC data management requirements

Use case Domain Sim/EOD/ana
lysis

Data
size

I/O Requirements

FLASH High-energy
density physics

Simulation ~1PB Data transformations, scalable
I/O interfaces, correlation
among simulation and
experimental data

CMB /
Planck

Cosmology Simulation,
EOD/Analysis

10PB Automatic data movement
optimizations

DECam &
LSST

Cosmology EOD/Analysis ~10TB Easy interfaces, data
transformations

ACME Climate Simulation ~10PB Async I/O, derived variables,
automatic data movement

TECA Climate Analysis ~10PB Data organization and efficient
data movement

HipMer Genomics EOD/Analysis ~100TB Scalable I/O interfaces, efficient
and automatic data movement

48

Easy interfaces and superior performance

Autonomous data management

Information capture and management

48

Next Gen Storage – Proactive Data Containers (PDC)

Memory

Disk-based storage

Archival storage (HPSS
tape)

Shared burst buffer

Hardware

Node-local storage

Campaign storage

Software
High-level API Applications

Usage

… Data (in memory)

49

▪ Object-centric data access interface
 Simple put, get interface
 Array-based variable access

▪ Transparent data management
 Data placement in storage hierarchy
 Automatic data movement

▪ Information capture and
management
 Rich metadata
 Connection of results and raw data with

relationships

Persistent Storage API

BB FS Lustre DAOS

…

PDC System – High-level Architecture

50

▪ Object-level interface
– Create – containers and objects
– Add attributes
– Put object
– Get object
– Delete object

▪ Array-specific interface
– Create regions
– Map regions in PDC objects
– Lock
– Release

51

Object-centric PDC Interface

J. Mu, J. Soumagne, et al., “A Transparent Server-managed Object Storage
System for HPC”, IEEE Cluster 2018

Object-centric PDC Interface

J. Mu, J. Soumagne, et al., “A Transparent Server-managed
Object Storage System for HPC”, IEEE Cluster 2018

Release

▪ Object-level interface
– Create – containers and objects
– Add attributes
– Put object
– Get object
– Delete object

▪ Array-specific interface
– Create regions
– Map regions in PDC objects
– Lock
– Release

▪ Usage of compute resources for I/O
– Shared mode – Compute nodes are shared

between applications and I/O services
– Dedicated mode – I/O services on separate

nodes

▪ Transparent data movement by PDC
servers

– Apps map data buffers to objects and PDC
servers place and manage data

– Apps query for data objects using attributes

▪ Superior I/O performance

53

Transparent data movement in storage hierarchy

H. Tang, S. Byna, et al., “Toward Scalable and Asynchronous Object-centric Data Management for HPC”,
IEEE/ACM CCGrid 2018

▪ Flat name space
▪ Rich metadata

– Pre-defined tags that includes
provenance

– User-defined tags for capturing
relationships between data objects

▪ Distributed in memory metadata
management

– Distributed hash table and bloom
filters used for faster access

54

Metadata management

H. Tang, S. Byna, et al., “SoMeta: Scalable Object-centric Metadata Management for High Performance
Computing”, to be presented at IEEE Cluster 2017

HDF5 and PDC bridge

• Developed a HDF5 Virtual
Object Layer (VOL) to make
PDC available to all HDF5
applications

• Minimal code change for
HDF5 applications and
working towards no code
change requirement
• 2X to 7X speed up with dedicated

mode of PDC

55

VPIC-IO write performance

BD-CATS I/O performance

Collaborators: THG

Conclusions

Easy interfaces and superior performance

Autonomous data management

Information capture and management

56

• Simpler object interface
• Applications produce data objects and declare to keep them persistent
• Applications request for desired data

• Asynchronous and autonomous data movement
• Bring interesting data to apps

• Manage rich metadata and enhance search capabilities
• Perform analysis and transformations in the data path

▪Contact:
• Suren Byna (sdm.lbl.gov/~sbyna/) [SByna@lbl.gov]

▪Contributions to this presentation
• ExaHDF5 project team (sdm.lbl.gov/exahdf5)
• Proactive Data Containers (PDC) team (sdm.lbl.gov/pdc)
• SDM group: sdm.lbl.gov

57

Thank you!

	Efficient Scientific Data Management on Supercomputers
	Scientific Data - Where is it coming from?
	Life of scientific data
	Supercomputing systems
	Supercomputer architecture - Cori
	Supercomputer architecture - Summit
	Scientific Data Management in supercomputers
	Scientific Data Management in supercomputers
	Focus of this presentation
	Trends – Storage system transformation
	Parallel I/O software stack
	Parallel I/O – Application view
	Parallel I/O – System view
	What is HDF5?
	What is HDF5?
	HDF5 is like …
	HDF5 is designed …
	HDF5 Overview
	HDF5 in Exascale Computing Project
	HDF5 Ecosystem
	HDF5 Data model
	HDF5 File
	HDF5 Data Model
	HDF5 Dataset
	HDF5 Dataspace
	HDF5 Dataspace
	HDF5 Dataset with a 2D array
	HDF5 Groups and Links
	HDF5 Attributes
	HDF5 Home Page
	HDF5 Software Layers & Storage
	The General HDF5 API
	The HDF5 API
	General Programming Paradigm
	Basic Functions
	Other Common Functions
	HDF5 performance on supercomputers
	Applications: EQSIM
	Applications: EQSIM
	Applications: Warp and QMCPACK
	Applications: AMReX-based applications
	Facilities: Astrophysics and Neuroscience codes
	Autonomous data management using object storage – Proactive Data Containers (PDC)
	Storage Systems and I/O: Current status
	HPC data management requirements
	Next Gen Storage – Proactive Data Containers (PDC)
	PDC System – High-level Architecture
	Object-centric PDC Interface
	Object-centric PDC Interface
	Transparent data movement in storage hierarchy
	Metadata management
	HDF5 and PDC bridge
	Conclusions
	Thank you!

