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Moore’s Law IS Ending
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Hennessy / Patterson
We use delivered performance as the metric (not just density) 
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More Efficient Architectures and Packaging
The next 10 years after exascale

Numerous Opportunities Exist to 
Continue Scaling of Computing Performance

Many unproven candidates yet to be invested at scale.  Most are disruptive to our current ecosystem.

New
 Models

 of C
omputat

ion

Deca
des

 be
yon

d e
xas

cal
e

AI/ML,  Quantum, others… 

Hardware Specialization

Post CMOS



The Future Direction for Post-Exascale Computing



Specialization: 
Natures way of Extracting More Performance in Resource Limited Environment
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Powerful General Purpose Many Lighter Weight
(post-Dennard scarcity)

Many Different Specialized
(Post-Moore Scarcity)

Xeon, Power KNL AMD, Cavium/Marvell, GPU Apple, Google, Amazon



Extreme Hardware Specialization is Happening Now!
This trend is already well underway in broader electronics industry  
Cell phones and even megadatacenters (Google TPU, Microsoft FPGAs…)
(and it will happen to HPC too… will we be ready?) 29 different heterogeneous 

accelerators in Apple A8 (2016)
40+ different heterogeneous 

accelerators in Apple A11 (2019)



 

4. AcWiYaWe​ performs the nonlinear function of the artificial neuron, with options for ReLU, Sigmoid, and so on. Its 
inputs are the Accumulators, and its output is the Unified Buffer. It can also perform the pooling operations needed 
for convolutions using the dedicated hardware on the die, as it is connected to nonlinear function logic. 

5. WUiWe_HoVW_MemoU\​ writes data from the Unified Buffer into the CPU host memory. 
The other instructions are alternate host memory read/write, set configuration, two versions of synchronization, interrupt host, 
debug-tag, nop, and halt. The CISC MatrixMultiply instruction is 12 bytes, of which 3 are Unified Buffer address; 2 are 
accumulator address; 4 are length (sometimes 2 dimensions for convolutions); and the rest are opcode and flags.  

The philosophy of the TPU microarchitecture is to keep the matrix unit busy. It uses a 4-stage pipeline for these CISC 
instructions, where each instruction executes in a separate stage. The plan was to hide the execution of the other instructions 
by overlapping their execution with the ​MaWUi[MXlWiSl\​ instruction. Toward that end, the ​Read_WeighWV​ instruction 
follows the decoupled-access/execute philosophy [Smi82], in that it can complete after sending its address but before the 
weight is fetched from Weight Memory. The matrix unit will stall if the input activation or weight data is not ready.  

We don’t have clean pipeline overlap diagrams, because our CISC instructions can occupy a station for thousands of 
clock cycles, unlike the traditional RISC pipeline with one clock cycle per stage. Interesting cases occur when the activations 
for one network layer must complete before the matrix multiplications of the next layer can begin; we see a “delay slot,” 
where the matrix unit waits for explicit synchronization before safely reading from the Unified Buffer. 

As reading a large SRAM uses much more power than arithmetic, the matrix unit uses systolic execution to save energy 
by reducing reads and writes of the Unified Buffer [Kun80][Ram91][Ovt15b]. Figure 4 shows that data flows in from the left, 
and the weights are loaded from the top. A given 256-element multiply-accumulate operation moves through the matrix as a 
diagonal wavefront. The weights are preloaded, and take effect with the advancing wave alongside the first data of a new 
block. Control and data are pipelined to give the illusion that the 256 inputs are read at once, and that they instantly update 
one location of each of 256 accumulators. From a correctness perspective, software is unaware of the systolic nature of the 
matrix unit, but for performance, it does worry about the latency of the unit. 

The TPU software stack had to be compatible with those developed for CPUs and GPUs so that applications could be 
ported quickly to the TPU. The portion of the application run on the TPU is typically written in TensorFlow and is compiled 
into an API that can run on GPUs or TPUs [Lar16]. Like GPUs, the TPU stack is split into a User Space Driver and a Kernel 
Driver. The Kernel Driver is lightweight and handles only memory management and interrupts. It is designed for long-term 
stability. The User Space driver changes frequently. It sets up and controls TPU execution, reformats data into TPU order, 
translates API calls into TPU instructions, and turns them into an application binary. The User Space driver compiles a model 
the first time it is evaluated, caching the program image and writing the weight image into the TPU’s weight memory; the 
second and following evaluations run at full speed. The TPU runs most models completely from inputs to outputs, 
maximizing the ratio of TPU compute time to I/O time. Computation is often done one layer at a time, with overlapped 
execution allowing the matrix multiply unit to hide most non-critical-path operations. 

 
 

 
FigXUe 3. ​TPU Printed Circuit Board. It can be inserted in the slot FigXUe 4. ​Systolic data flow of the Matrix Multiply Unit. Software 
for an SATA disk in a server, but the card uses PCIe Gen3 x16. has the illusion that each 256B input is read at once, and they instantly  

update one location of each of 256 accumulator RAMs. 
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Large Scale Datacenters also Moving to Specialized Acceleration
The Google TPU
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Deployed in Google datacenters since 2015
• “Purpose Built” actually works  - Only hard to use if 

accelerators was designed for something else

• Could we use TPU-like ideas for HPC?

• Specialization will be necessary to meet energy-efficiency 
and performance requirements for the future of DOE science!

Model MHz 

Measured  
Watts TOPS/s GOPS/s /Watt

GB/s On-Chip 
Memory 

Idle Busy 8b FP 8b FP 

Haswell 2300 41 145 2.6 1.3 18 9 51 51 MiB 

NVIDIA K80 560 24 98 -- 2.8 29 160 8 MiB 

TPU 700 28 40 92 -- 2,300 34 28 MiB

Notional exascale system:
2,300 GOPS/W à?  288 GF/W (dp)  à a 3.5 MW Exaflop system!     



Amazon AWS Graviton CustomARM SoC (and others)
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AWS CEO Andy Jassy:

“AWS isn't going to wait for the 
tech supply chain to innovate 
for it and is making a statement 
with performance comparisons 
against an Intel Xeon-based 
instance. The EC2 team was 
clear that Graviton2 sends a 
message to vendors that they 
need to move faster and AWS 
is not going to hold back its 
cadence based on suppliers.”



Hardware Generators: Enabling Technology for Exploring Design Space
Together with Close Collaborations with Applied Math & Applications
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Chisel RISC-V OpenSOC

AXI
OpenSoC 
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Hardware 
Compilation

Software 
Compilation

SystemC 
Simulation

C++ 
Simulation
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Chisel

Open Source Extensible 
ISA/Cores

Open Source fabric
To integrate accelerators

And logic into SOC

DSL for rapid prototyping
of circuits, systems, and 

arch simulator components

Platform for experimentation 
with specialization

to extend Moore’s Law

Back-end to synthesize
HW with different devices

Or new logic families

Re-implement processor
With different devices or

Extend w/accelerators

SuperTools
Superconducting 
RISC-V

QUASAR
Quantum
ISA

Project 38
Multiagency
Architecture
Exploration

Active
Sensors
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Future Electron Scattering Detector

100,000 fps pixel detector
576 x 576 x 10 �m

Segmented silicon HAADF

FFaabbrriiccaattee  ddeetteeccttoorrss  QQ44CCYY22001166

Dedicated (donated) 
400 Gbs link to NERSC

LLiinnkk  tteessttiinngg  uunnddeerrwwaayy

Stream events to processors on Cori

Future goal: firmware processing 
(reduce data rate)
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Future Electron Scattering Detector
4 PB/day

Co-Develop Hardware 
and Algorithm



Research platform: 96-core Tiled CPU on FPGA
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• Z-Scale processors connected in a 
Concentrated Mesh

• 4 Z-scale processors
• 2x2 Concentrated mesh with 2 

virtual channels
• Micron HMC Memory

http://www.codexhpc.org/?p=367
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Putting Architecture Specialization to work for 
HPC
• But what are the right specializations to include?
• What is the cost model (we know we cannot afford 

to spin our own chips from scratch)
• Leverage the Open Source and ARM IP Ecosystem:

– IP is the commodity (not the chip)!!!
• What is the right partnership/economic model for 

the future of HPC?



Project 38 -- Background
DOD and DOE recognize the imperative to develop new mechanisms for 
engagement with the vendor community, particularly on architectural 
innovations with strategic value to USG HPC. 
Project 38 (P38) is a set of vendor-agnostic architectural explorations involving DOD, the 
DOE Office of Science, and NNSA (these latter two organizations are referred to in this 
document as “DOE”). These explorations should accomplish the following: 
• Near-term goal: Quantify the performance value and identify the potential costs of 

specific architectural concepts against a limited set of applications of interest to 
both the DOE and DOD. 

• Long-term goal: Develop an enduring capability for DOE and DOD to jointly explore 
architectural innovations and quantify their value. 

• Stretch goal:  Specification of a shared, purpose built architecture to drive future 
DOE-DOD collaborations and investments. (purpose-built HPC by 2025)

COTS
Internal 
Design & 

Production
Traditional DOE 
Procurement

ECP Aggressive 
Vendor

Innovative 
USG



Recapping Key P38 Technology Features
innovative USG

• Fixed Function Accelerators & COTS IP (Extreme Heterogeneity)
• RISC-V and ARM cores
• Fixed function FFT (Generated by SPIRAL)

• Word Granularity Scratchpad Memory (Gather Scatter):
• Gather-scatter within processor tile 
• more effective SIMD

• Recoding engine (Efficient programmable FSM & data reorg.)
• Sub-word granularity and high control irregularity
• Handles branch-heavy code (avg. 20x improvement over processor core)
• One lane is 1/100th the size of a x86 processor core

• Hardware Message Queues (Lightweight Interprocessor Communication)
• Gather-scatter between processor tiles
• Async between tiles to eliminate overhead of barriers
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Lightweight

In-Order Scalar Core
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ARB

memory
slice

grid ’processors’

particle ’processors’

buffers

get {index,delta}

put {index,delta}

Particles
(streamed from memory)
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memory
slice
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memory
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memory
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memory
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slice

ARB

memory
slice

ARB

memory
slice

particles/s < STREAM/64B

8 updates/particle (classic)

32 updates/particle (Gyro)

Throughput > 32*particles/s

could be private caches or 

cache banks

(n.b., grid >> SPM)

sized for memory latency,

load balance

PIC Charge(mass) Deposition
for(i=0..#particles)

for(0..7 points) // x4 for Gyro
grid[ foo(pos[i],point) ] += goo(pos[i],point);

29/66
FFT butterfly calculation scheme
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General-Purpose: Tensor Contractions on Word Granularity SPM

  3 / 3

George Fann & Yuan Zheng

number_o
f_particles

basis_siz
e

number
_of_bloc
ks

nonzero_
fraction

runs the 
contraction
?

Number of 
SIMD lanes 

Bandwidth waste 
for loading the t3 
or v in inner loop

Bandwidth waste 
for the entire 
application

1 40 70 40 0.2 yes 8 55% 36%

2 60 70 40 0.2 yes 8 100% 65.4%

3 65 70 40 0.2 yes 8 700% 457.8%

4 40 70 40 0.1 yes 8 154% 100.7%

5 40 70 40 0.2 yes 16 166% 109%

Vertices in the grid, O(100M)

Cachable block 
of independent
finite elements

Displacement
Rotation
Temperature
Pressure
Flux
Etc.

Forces

Size of finite element, ~300

Dense arithmetic kernel
O(100) Flops per entry

Graph coloring ensures correct behavior with relaxed memory coherence

Gather

Scatter

Element Processing Paradigm
(scatter/gather)

Finite Element Example 
(Fan Blade Mount)
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Create Hardware Features to Accelerate Broadly used 
Numerical Algorithm Primitives

• Accelerate commonly used primitives for 
interprocessor communication
– Queues & DAGs commonly used in pseudocode
– Why not make them REAL? (in design library)
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particles/s < STREAM/64B

8 updates/particle (classic)

32 updates/particle (Gyro)

Throughput > 32*particles/s

could be private caches or 

cache banks

(n.b., grid >> SPM)

sized for memory latency,

load balance

PIC Charge(mass) Deposition
for(i=0..#particles)

for(0..7 points) // x4 for Gyro
grid[ foo(pos[i],point) ] += goo(pos[i],point);

0 100 200 300 400 500 600

Local Exchange

Remote Exchane

Cycles

Inter-Thread Latency

RISCV-SoC
x86

12x

5.7x
Remote ExchangeRemote Exchange

Example Pseudocode
Algorithm: triangularSolve (Kale/Charm++)
Input: Row myRows[]
Output: Values x[]

if any DataMessage msg arrived then
receiveDataMessage(msg) 

end
for each Row r in independent rows do

computeRow(r,0) 
end
while there are pending rows do

wait for DataMessage msg
receiveDataMessage(msg) 

end
Algorithm 4: Local Triangular Solve 

Pipelining: Cholesky Inversion 
3 Steps: Factor, Invert L, Multiply L’s 
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Sparse Matrix Trisolve (refresher)
Currently Use OMP Atomic to track dependencies

Algorithm 1 A serial SpTRSV method for Lx = b, where L in CSC format.
1: malloc(*left sum, n)
2: memset(*left sum, 0)
3: for i = 0 to n� 1 do
4: x[i]  (b[i]-left sum[i])/val[col ptr[i]]
5: for j = col ptr[i]+1 to col ptr[i + 1]�1 do
6: left sum[row idx[j]]  left sum[row idx[j]] + val[j] ⇥ x[i]
7: end for
8: end for
9: free(*left sum)

(a) L’s matrix form. (b) L’s graph form. (c) Level-sets generated.

Fig. 1. A lower triangular matrix L and parallel SpTRSV using the level-set method.

2.2 Level-Set Method for Parallel SpTRSV

The motivation of parallel-SpTRSV comes from the observation that some com-
ponents/vertices are independent and can be processed simultaneously (e.g.,
vertices 0 and 1 in Figure 1 (b)). Therefore, the components can be partitioned
into a number of sets so that components inside a set can be solved in parallel,
while the sets are processed sequentially (i.e., level by level). With this obser-
vation, Anderson and Saad [1] and Saltz [23] introduced a preprocessing stage
to perform such a partition before the solving stage. Figure 1 (c) shows that
five level-sets are generated for the matrix L. Consequently, levels 0, 1 and 2
can use parallel hardware (e.g., a dual-core machine) for accelerating SpTRSV.
However, between sets, dependencies still exist so synchronization is required at
runtime.

2.3 Motivation for Avoiding Synchronization

Synchronization remains a performance bottleneck for many applications and
has long been a classic problem in computer systems research [11, 13, 21]. To
evaluate the synchronization cost in SpTRSV, we run a parallel SpTRSV im-
plemented by Park et al. [20] based on the aforementioned level-set approach.
We show the cost of the preprocessing stage and a breakdown of the solving
stage execution time (i.e., synchronization cost and floating-point calculations)
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Example of CoDevelopment of Hardware and Software: 
SuperLU Dependency Tracking

Algorithm 1 A serial SpTRSV method for Lx = b, where L in CSC format.
1: malloc(*left sum, n)
2: memset(*left sum, 0)
3: for i = 0 to n� 1 do
4: x[i]  (b[i]-left sum[i])/val[col ptr[i]]
5: for j = col ptr[i]+1 to col ptr[i + 1]�1 do
6: left sum[row idx[j]]  left sum[row idx[j]] + val[j] ⇥ x[i]
7: end for
8: end for
9: free(*left sum)

(a) L’s matrix form. (b) L’s graph form. (c) Level-sets generated.

Fig. 1. A lower triangular matrix L and parallel SpTRSV using the level-set method.

2.2 Level-Set Method for Parallel SpTRSV

The motivation of parallel-SpTRSV comes from the observation that some com-
ponents/vertices are independent and can be processed simultaneously (e.g.,
vertices 0 and 1 in Figure 1 (b)). Therefore, the components can be partitioned
into a number of sets so that components inside a set can be solved in parallel,
while the sets are processed sequentially (i.e., level by level). With this obser-
vation, Anderson and Saad [1] and Saltz [23] introduced a preprocessing stage
to perform such a partition before the solving stage. Figure 1 (c) shows that
five level-sets are generated for the matrix L. Consequently, levels 0, 1 and 2
can use parallel hardware (e.g., a dual-core machine) for accelerating SpTRSV.
However, between sets, dependencies still exist so synchronization is required at
runtime.

2.3 Motivation for Avoiding Synchronization

Synchronization remains a performance bottleneck for many applications and
has long been a classic problem in computer systems research [11, 13, 21]. To
evaluate the synchronization cost in SpTRSV, we run a parallel SpTRSV im-
plemented by Park et al. [20] based on the aforementioned level-set approach.
We show the cost of the preprocessing stage and a breakdown of the solving
stage execution time (i.e., synchronization cost and floating-point calculations)
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MsgQ TriSolve

OMP TriSolveOMP limit

4TB/s BW limit

MsgQ can enable a further 20x 
scaling!

Speedup 2x

Speedup 8x

ARB

memory
slice

grid ’processors’

particle ’processors’

buffers

get {index,delta}

put {index,delta}

Particles
(streamed from memory)

ARB

memory
slice

ARB

memory
slice

ARB

memory
slice

ARB

memory
slice

ARB

memory
slice

ARB

memory
slice

ARB

memory
slice

particles/s < STREAM/64B

8 updates/particle (classic)

32 updates/particle (Gyro)

Throughput > 32*particles/s

could be private caches or 

cache banks

(n.b., grid >> SPM)

sized for memory latency,

load balance

PIC Charge(mass) Deposition
for(i=0..#particles)

for(0..7 points) // x4 for Gyro
grid[ foo(pos[i],point) ] += goo(pos[i],point);

OpenMP
MsgQ

Benefit of MsgQ’s on KNL-like architecture

Algorithm: Redesign SuperLU algorithm to use MsgQ
instead of atomics to track dependencies.  

Performance:
– 12x lower overhead per message than OpenMP
– 4x faster than OpenMP for 64cores
– Potential for 8x-20x further scaling



• 7x faster per lane than x86, 64 lanes => ~450x faster than single x86 thread
• Recode engine (UDP) scales to ~150 Gbps for a 64-lane Recode engine (<<1 watt total)
• 128 tile chip could achieve 20 Tbps total line rate;  256 tiles => 40 Tbps
• Large pattern sets supported with NFA, and scale-out

Extreme, Scalable Regex at 10-40 Tbps

Recode: Regex 1-lane Performance and Energy Efficiency
Recoding Engine, Chien (ANL)



SNAPPY: Sparse Matrix Compression Accelerator
Spyplot VisualizationMatrices

Recoding Engine, Chien (ANL/U.Chicago) and Dilip Vasudevan (LBNL)
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Fixed Function Accelerators Design Study
Dark Silicon 

• Adopt SmartPhone SoC Strategy --
mix fixed-function accelerators with 
programmable cores

• Target commonly used scientific 
primitives/libraries 
– BLAS (level 1,2,3)
– FFT (FFTW or SPIRAL interface) 
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FFT butterfly calculation scheme
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FFT Example With FFTx (Francetti, Popovic, Canning)

For FFT of size N
– Storage    = N * operand_size
– Compute = 5/2 * N * log2(N) FLOPs
– Use Pseudo-2D algorithm for large FFTs

Single FFT Accelerator Resource
• Assumptions: Spiral HW Generator

– 1GHz @ 14nm technology node
– 2M point transform (data off-chip)
– HPC Challenge Benchmark: Single precision 

(Float32) complex, out-of-place 
• Limit: 100 GB/s off-chip memory

– 16k points on-chip engine
– Analytic model for FP limit ~1.5TFLOPs SP
– 4.5mm2 area for compute @ 14nm

• Limit: 1TB/s off-chip memory
– ~10k MADD + ~5k add -> 15k FP@1GHz
Analytical model for FP limit ~15TFLOPs SP
– 47mm2 area for compute @14nm



FFT Radix 2 RTL generated by SPIRAL – @14nm
Run RTL through synthesis to get accurate power/area/timing
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Chip-layout at 14nm using Mentor Design Synthesis Flow
• Shows 2x improved density improvement over analytic model, but 2x lower clock
• Floating point multiplier is the Critical path around 1900 ps leading to

• 500 MHz design for standard cell based synthesis
• Improved StdCell library (better than OpenSDK) could result in further improvements
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Future Electron Scattering Detector

100,000 fps pixel detector
576 x 576 x 10 �m

Segmented silicon HAADF

FFaabbrriiccaattee  ddeetteeccttoorrss  QQ44CCYY22001166

Dedicated (donated) 
400 Gbs link to NERSC

LLiinnkk  tteessttiinngg  uunnddeerrwwaayy

Stream events to processors on Cori

Future goal: firmware processing 
(reduce data rate)
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Future Electron Scattering Detector
4 PB/day

Results for RISC-V FFT Accelerator for CryoEM

Created RISC-V Core with FFT ISA Extension
RISC-V+FFT Accel 126x faster than x86 host
–FFT on Intel Core i7-5930K @ 3.50GHz: ~265ms
–FFTAccel (Floating): ~2.10ms
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Benchmarking FFT Accelerator for image analysis (Donofrio, Fard)

Original Image FFT

valid

insn[31:0]

rs1[31:0]

rs2[31:0]
wr

rd[31:0]

wait

ready

PCPI

PicoRV32 FFT 
Accel

Instruction opcode[3:2] Description
fft_config 10b Configures FFT parameters
fft_status 01b Reads FFTAccel status registers
fft_start 11b Starts FFT processing
fft_stop 00b Stops FFT processing



Full Measure

2
8

Full Custom Acceleration for Targeted Science
(Industrializing use of Anton or GRAPE-like technology)



FPGA vs. ASIC

29

FPGA ASIC

Cost for first FPGA (NRE): $2,500-$7,500
Cost for 20,000th : $2,500-$7,500
Clock Rate: 0.1-0.3Ghz

Cost for first ASIC (NRE): $2M-$15M
Cost for 20,000th : $150-$250
Clock Rate: 1-2 Ghz (10x)
Area Efficiency: 10x FPGA
Energy Efficiency : 10x-100x FPGA



Example Algorithm-Driven Design of Hardware Accelerators

25%+ of DOE 
workload is 
Density 
Functional 
Theory (DFT)

• What: Design the hardware accelerator 
around the target algorithm/application

– Purpose-built acceleration
– Lab-led reference design

• Why: Huge opportunities to improve 
performance density and efficiency

– FFT hardware accelerator 50x-100x higher 
performance density than GPU or 
CPU+SIMD (using SPIRAL generator)

• How: Use Density Functional Theory (DFT) 
as the target for this experiment

1. Large fraction of the DOE workload
2. Mature code base and algorithm
3. LS3DF formulation minimizes off-chip 

communication and scales O(N)

Example: LS3DF/Density Functional Theory (DFT)



The DFT kernel for each fragment 
Communication Avoiding LS3DF Formulation – Scales O(N)

DFT algorithm 

The all-band CG  (AB-CG) method for HΨi=εiΨi.  The 
time consuming steps are indicated by the asterisk 
sign.  The other parts will be called collectively as the 
Fortran-do-loops.  

3D parallel FFT 

 
 

ZGEMM 
 
 
  

O(N2 Log(N))
Comm bound if non-local

O(N3)
Compute-bound

TSQR & Choelesky

One patch per FPGA
400 bands/patch
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LS3DF O(N) Algorithm Formulation 
Minimizes off-chip Communication

Compute Intensive Kernels
Targeted for HW Specialization



Von-Neumann Instruction Processors vs. Hardware Circuits
(must redesign for static dataflow and deep flow-through pipelines)

FPGA (Field Programmable Gate Array): Granularity 
of these operations and wires are single bits

CGRA (Coarse Grain Reconfigurable Array): 
Programmability & ALUs at word granularity

improves speed and density!!
(Cerebras, GraphCore, SambaNova, LPU)

ASIC or Chiplet (custom circuit): Another factor of 
10x on density and energy efficiency.



Algorithm Reformulated as Custom Circuit

3
3

DRAM

GEMM

iFFT1D FFT1D

Point wise

DRAM

GEMM

iFFT3D

FFT3D

Point 
wise

See Also Torsten Hoefler “StreamBLAS” for FPGA



Architecture Specialization for Science
(hardware is design around the algorithms) can’t design effective hardware without math

Materials
Density Functional 

Theory (DFT)
Use O(n) algorithm
Dominated by FFTs

FPGA or ASIC

CryoEM
Accelerator
LBNL detector
750 GB / sec

Custom ASIC near 
detector

Genomics 
Accelerator
String matching

Hashing

2-8bit (ACTG)
FPGA solution

Digital fluid 
Accelerator

3D integration
Petascale chip
1024-layers
General / special 

HPC solution
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Post CMOS Device Technology

3
5

Accelerating the pace for discovery 
for the future of Microelectronics



Many Options for New Device Technology
but few satisfy Borkar-Shalf Criteria (2013-2015 viewpoint)

1. Gain
2. Signal to Noise
3. Scalability
4. Manufacturability

OSTP Report 2015: John Shalf
Robert Leland and Shekhar Borkar
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REBOOTING COMPUTING

ARCHITECTURE AND 
SOFTWARE ADVANCES
Architectural schemes to extend dig-
ital computing aim to better manage 
energy, decrease power consumption, 
lower overall chip cost, and improve 
error detection and response. 

Energy management 
Current energy-management tech-
nologies are ubiquitous and typically 
coarse grained. Dynamic voltage and 
frequency scaling (DVFS) and thermal 
throttling lower both clock frequen-
cies and voltages when computing 
demands do not require peak per-
formance. Coarse-grained DVFS can 
save signi!cant power in current con-
sumer electronics devices, which are 
mostly idle. However, it only margin-
ally bene!ts devices that operate near 
100 percent utilization. Finer-grained 

power management might provide 
additional potential to recover energy, 
enabling faster transitions between 
power states by having the software 
direct state changes.

Circuit design 
Studies have demonstrated approaches 
that enable wires to operate at a lower 
voltage for long-haul connections and 
then reamplify e$ciently at the end-
points, although with some loss from 
reampli!cation. A recent NVIDIA 
paper estimated an opportunity for 
two to three times improvement using 
such advanced circuit design tech-
niques with current technologies.8

A more aggressive path to perfor-
mance enhancement is clockless (or 
domino logic) design. Clock distribu-
tion consumes a large fraction of sys-
tem power, and constricts a circuit 

to the operation speed of its slowest 
component. Practical and effective 
clockless designs have proven elu-
sive, but recent examples show that 
this approach could be a viable way 
to lower dynamic power consump-
tion for both neuromorphic and digi-
tal applications.9

System-on-chip (SoC) 
specialization
The core precept of SoC technology is 
that chip cost is dominated by com-
ponent design and veri!cation costs. 
Therefore, tailoring chips to include 
only the circuit components of value to 
the application is more economically 
e$cient than designing one chip that 
serves a broad application range—the 
current commodity design practice. 
This tailoring strategy is common 
practice for cell-phone chips, such as 

TABLE 1. Summary of techology options for extending digital electronics.

Improvement Class Technology Timescale Complexity Risk Opportunity

Architecture and 
software advances

Advanced energy management Near-Term Medium Low Low

Advanced circuit design Near-Term High Low Medium

System-on-chip specialization Near-Term Low Low Medium

Logic specialization/dark silicon Mid-Term High High High

Near threshold voltage (NTV) operation Near-Term Medium High High

3D integration and 
packaging

Chip stacking in 3D using thru-silicon vias (TSVs) Near-Term Medium Low Medium

Metal layers Mid-Term Medium Medium Medium

Active layers (epitaxial or other) Mid-Term High Medium High

Resistance reduction Superconductors Far-Term High Medium High

Crystaline metals Far-Term Unknown Low Medium

Millivolt switches (a 
better transistor)

Tunnel field-e!ect transistors (TFETs) Mid-Term Medium Medium High

Heterogeneous semiconductors/strained silicon Mid-Term Medium Medium Medium

Carbon nanotubes and graphene Far-Term High High High

Piezo-electric transistors (PFETs) Far-Term High High High

Beyond transistors 
(new logic 
paradigms)

Spintronics Far-Term Medium High High

Topological insulators Far-Term Medium High High

Nanophotonics Near/Far-Term Medium Medium High

Biological and chemical computing Far-Term High High High



Comparing CMOS Technology Alternatives

8

Benchmarks with spin torque

• Favorable Spin 
devices based 
logic

• With 
introduced 
SHE for lower 
energy

• With AFM for 
high speed

Nikonov/Young (Intel) Exploratory Integrated Circuits 
Group / Components Research

Better

Faster clock rate Slower
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Nikonov & Young

10x-100x Slower (more parallelism)
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Transition probability=0.01 !
Cap. per inverter=0.57fF!

Energy-Performance Comparison 
(30-stage fanout-4 inverter chains) 

Today’s CMOS
Technology 

TFET advantage at low clock rates
(need 10-100x more parallelism) 



Multiscale Modeling to ccelerate Post-CMOS Development

Materials 
PhysicsJunction PhysicsDevice Physics

Length Scale

%XON
0DWHULDOV

-XQFWLRQVCompact Models

Analog
Simulation

PARADISE

Characterizing materials, analyzing devices, understanding impacts on circuits, 
architectures, systems and applications. 

Bulk Material:
~100 Atoms

One Junction: 
~100k Atoms

One Device:
~1M Atoms

Circuit/Std. Cell:
10-100 Devices

Processor/System:
~10k-1B Circuits

Systems

Architectural
Simulation

Circuits

Current Drive, 
switching energy, 

transients
Clock-Rates, 
Power, Area

Junction Physics,
I-V curves 

Material Physics
Carrier Mobility

A holistic end-to-end modeling approach is required



Gap: Connecting and Scaling

Materials 
PhysicsJunction PhysicsDevice Physics

Length Scale

%XON
0DWHULDOV

-XQFWLRQVCompact Models

Analog
Simulation

PARADISE

Accelerated feedback path to focus device and material discovery process 

Bulk Material:
~100 Atoms

One Junction: 
~100k Atoms

One Device:
~1M Atoms

Circuit/Std. Cell:
10-100 Devices

Processor/System:
~10k-1B Circuits

Length Scales

Systems

Architectural
Simulation

Circuits

Switch Speed, Power, 
Area , Fan-out, 

Stability

Application 
Performance

System-Power
Interface-level 

Losses/Performance Materials Metrics



Integrated Plan to Accelerate Microelectronics Discovery

ME Transistor SystemArchitectureMaterials Discovery

Computational Design
Synthesis

Characterization

Device Design
Fabrication
Parametrics

RTL/Gate Simulator
Power 
Delay

Arch. Level Simulator
TDP, EDP

Demonstration Vehicle  :  Building an AttoJoule Magnetoelectric logic/memory

!me	

fsec	

energy	 length	

meV	

Å	

End-to-End Acceleration of Discovery and Evaluation of New Devices

Physical, Chemical, Materials and Computer Sciences

National User Facilities for Metrology and Experimental Validation



New Breakthroughs in Transistor Technology 
Require Fundamentally New Principles of Operation
A More sensitive switch:  MESO Magneto-Electric Switch

Modulated by Inverse Spin Hall Effect instead of Thermionic Emission

Voltage Range

Off vs 
On

86,000 Materials on the 
Materials Project

38,335  with no bandgap

8,423 with full spin-polarized 
bandstructures

3,817 GGA Half-Metals

910 with ICSD Provenance 
and likely ground state

Over 140 Potential Half-Metals 
for Experimental Investigation

MESO



PARADISE: Post-Moore Architecture and Accelerator Design Space Exploration

• Multiple devices, memories, and other “post 
Moore” technologies in development

• Evaluating each in isolation misses big picture
• Devices can be better designed with high-level metrics
• Architects can evaluate how exploit new technologies

Until now, we lacked the tools to do so 
systematically and rapidly for many technologies 

(PARADISE addresses that gap)

Transistor/Devices SystemsArchitectures

George Michelogiannakis & Dilip Vasudevan

Devices

Energy
Delay

Circuits

Critical 
Path

A
B

A+B

Performance
Logic Blocks

Systems



PARADISE: Post-Moore Architecture and Accelerator Design Space Exploration

• Multiple devices, memories, and other “post 
Moore” technologies in development

• Evaluating each in isolation misses big picture
• Devices can be better designed with high-level metrics
• Architects can evaluate how exploit new technologies

Until now, we lacked the tools to do so 
systematically and rapidly for many technologies 

(PARADISE addresses that gap)

Transistor/Devices SystemsArchitectures

George Michelogiannakis & Dilip Vasudevan
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The Sum of the Parts is Greater than the Whole

New Architecture 
+ 

New Devices



Four type of skyrmion bags moving by STT to check 
skyrmion Hall effect. 

From this results, we can check velocity while Hall effect 
dominant case and edge effect dominant case.
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Skyrmions “bags” for Multi-Valued Logic

1nm
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S(0)
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number 1 0 -1 1

S(1) S(2) S(0,S(1))

400nm

800n
m

u is 15m/s on this simulation.

We considered only STT

248nm

1800nm600nm
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Skyrmion-based Spiking Neural Networks

4
6

Z. He et al., 1705.02995v1 (2017)

Incoming
Skyrmions
Drift
Direction

Barrier

Presynaptic Postsynaptic Outgoing Skyrmions
Drift Direction

Detect + Induce Skyrmion
At Crosspoint

Dilip Vasudevan & Mi Young Im

A:0, B:0, Y:01

2 A:1, B:0, Y:0
A:0, B:1, Y:0

A:1, B:1, Y:13

Y=0

Y=1

Y=0



Conclusions

• Think more seriously about how to put 
specialization productively to use for science
– Requires deep understanding of applied mathematics 

and the underlying algorithms to be successful

• Reevaluate the business/economic model for the 
design and acquisition of HPC systems

• Accelerate the development of materials, devices, 
and systems for post-CMOS electronics

- 47 -



Beyond-Moore Computing Directions

Heterogeneous 
Architectures  

Specialized 
accelerators for 

performance / energy

Post CMOS 
Devices/Materials
Evaluate new devices 

using simulation 
across scales

New Models of 
Computation

Quantum algorithms, 
tools and testbeds, for 
science applications

- 48 -

Workload Analysis, Testbeds, Deployment



Data Movement Challenge

4
9

Photonics and Advanced Packaging
http://www.padalworkshop.org/



Data Movement Costs: 
Energy to move data proportional to distance.        Power is near chip thermal limits

• Energy Efficiency of copper wire:
– Power = Frequency* Length / cross-section-area

– Wire efficiency does not improve as feature size shrinks

• Energy Efficiency of a Transistor:
– Power = V2 * frequency * Capacitance
– Capacitance ~= Area of Transistor
– Transistor efficiency improves as you shrink it

• Net result is that moving data on wires is 
starting to cost more energy than computing 
on said data  (interest in Silicon Photonics)

wire
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Package Performance is Pin Limited

5
1

23© 2017 Paul D. Franzon

The Bandwidth Gap

Source: Poulton, NVidea

Source: J. Poulton, Nvidia

High SERDES rates run
counter to end of 
Dennard Scaling
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Diverse Node Configurations for Datacenter Workloads

CPU

TOR

GPU TORCPU

GPU

TOR

CPU
NVR
AMNVR
AMNVR
AMNVR
AM

CPU

GPU

TOR

CPU
HBM
HBM
HBM
HBM

TORTOR

Training
• 8 connections: GPU 
• 8 links to HBM 

(weights)
• 8 links: to NVRAM
• 1 links: to CPU 

(control)

Inference
• 16 links to TOR 

(streaming data)
• 8 links HBM (weights)
• 1 link: CPU

Data Mining
• 6-links: HBM
• 15 links: NVRAM 

(capacity)
• 4 links: CPU 

(branchy code)

Graph Analytics
• 16 links HBM
• 8 links TOR
• 1 Link CPU

GPUTOR CPUNVRAM HBM



Disaggregated Node/Rack Architecture

5
3

Most solutions current disaggregation solutions use Interconnect bandwidth (1 – 10 GB/s) 
But this is significantly inferior to RAM bandwidth (100 GB/s – 1 TB/s) 

Current server

Current rack

Disaggregated rack

Pool and compose



Photonic MCM (Multi-Chip Module)

Optical switch 54

Fiber carrying 0.5 - 1 Tb/s 

High-Density fiber coupling array 
with 24 fibers = 6-12 Tb/s bi-
directional = 0.75 – 1.5 TB/s

Fiber coupler 
pitch: 10s of um

ASIC Circuits

Through-Silicon 
Via

Photonic 
Interposer

ASIC
Chip

CMOS Photonic Control Logic

Modulator Optical waveguide Photodetector Fiber coupler

Photonic SiP



Photonic MCM (Multi-Chip Module)

Compute MCM

HBM MCM NVRAM MCM
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Fiber carrying 0.5 - 1 Tb/s 
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with 24 fibers = 6-12 Tb/s bi-
directional = 0.75 – 1.5 TB/s
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ASIC Circuits
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Case for Disaggregation from a Workload Perspective
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• Introduce low-radix optical circuit switches 
to the OC-MCM topology
– 4x4 to 8x8 realizable with today’s technology
– Tens of switches can be collocated on a single chip

• Slower reconfiguration compared to packet 
switching
– Reconfiguration takes microseconds
– But traffic patterns are persistent for long 

periods (minutes to hours!)

• But transparent for packets
– No buffering for point-to-point means Time-of-Flight 

latencies
– Extremely energy efficient to reconfigure
– Minimize marooned resources

GPU GPU GPU GPUMEM

MEM

MEM

MEM

MEM

MEM

MEM

MEM

MEM

MEM

MEM

MEM
CMP CMP

Switch Switch



MEMMEM

MEM

MEM

MEM

MEM

MEM

MEM

GPU3GPU1 GPU2 GPU4

CMP1 CMP2 NIC1 NIC2MEMMEM

MEMMEM

ML : Inference Configuration

GPU GPU GPU GPUMEM

MEM

MEM

MEM

MEM

MEM

MEM

MEM

MEM

MEM

MEM

MEM
CMP CMP

Switch Switch

CMP CMPMEM MEM

M
EM

Switch Switch

GPU GPU GPU GPU

M
EM

M
EM

M
EM

M
EM

M
EM

M
EM

M
EM



MEMMEM

MEM

MEM

MEM

MEM

MEM

MEM

GPU3GPU1 GPU2 GPU4

CMP1 CMP2 NIC1 NIC2MEMMEM

MEMMEM

ML : Training Configuration

GPU GPU GPU GPUMEM

MEM

MEM

MEM

MEM

MEM

MEM

MEM

MEM

MEM

MEM

MEM
CMP CMP

Switch Switch

CMP CMP

M
EM

Switch Switch

GPU

GPU GPU

GPU

M
EM

M
EM

M
EM



PINE: Photonic Integrated Networked Energy Efficient Datacenters
Resource Disaggregation to custom-assemble diverse accelerators for diverse workload requirements

1) Energy-bandwidth 
optimized optical links

2) Embedded silicon 
photonics into OC-MCMs

3) Bandwidth steering for 
Custom Node Connectivity
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1 Tb/second per fiber
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Conclusions

• Think more seriously about how to put 
specialization productively to use for science
– Requires deep understanding of applied mathematics 

and the underlying algorithms to be successful

• Reevaluate the business/economic model for the 
design and acquisition of HPC systems

• Accelerate the development of materials, devices, 
and systems for post-CMOS electronics
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Hardware Specialization and the Move Towards 
Extreme Heterogenous Acceleration

7
0

Make Heterogeneous Acceleration Productive for Science


