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Technology Scaling Trends

Exascale in 2021... and then what?
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MOOFE'S LaW IS Ending Hennessy / Patterson

Intel Core i7 4 cores 4.2 GHz (Boost to 4.5 GHz)

Intel Core i7 4 cores 4.0 GHz (Boost to 4.2 GHz)
We use delivered performance as the metric (not just density) ol 451 018 7 & coros 4.0 GHZ (Boost 1o 42 ¢
Intel Xeon 4 cores 3.7 GHz (Boost to 4.1 GHz)
100,000 Intel Xeon 4 cores 3.6 GHz (Boost to 4.0 GHz) R —
Intel Xeon 4 cores 3.6 GHz (Boost to 4.0 GHz)
Intel Core i7 4 cores 3.4 GHz (boost to 3.8 GHz)
Intel Xeon 6 cores, 3.3 GHz (boost to 3.6 GHz) 49,935
Intel Xeon 4 cores, 3.3 GHz (boost to 3.6 GHz)
Intel Core i7 Extreme 4 cores 3.2 GHz (boost to 3.5 GHz)
Intel Core Duo Extreme 2 cores, 3.0 GHz
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Numerous Opportunities Exist to
ing Performance

Post CMOS

New Materials and Devices

More Efficient Architectures and Packaging %
The next 10 years after exascale - Hardware Specialization -

~

’\\ |':‘ Many unproven candidates yet to be invested at scale. Most are disruptive to our current ecosystem.

BERKELEY LAB



The Future Direction for Post-Exascale Computing

Past - Homogeneous :
Architectures
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. Present - CPU+GPU ;
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Towards Extreme Heterogeneity
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Specialization:

Natures way of Extracting More Performance in Resource Limited Environment

Powerful General Purpose Many Lighter Weight Many Different Specialized
(post-Dennard scarcity) (Post-Moore Scarcity)
{, < @

Filter feeding ’ 4.

Grain eating Coniferous-seed eating
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Nectas feeding Fruit eating
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Surface skimming Scything

Xeon, Power KNL AMD, Cavium/Marvell, GPU Apple, Google, Amazon




Extreme Hardware Specialization is Happening Now!

Is trend is already well underway in broader electronics industry
Cell phones and even megadatacenters (Google TPU, Microsoft FPGAs...)
and it will happen to HPC too... will we be ready?
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Large Scale Datacenters also Moving to Specialized Acceleration

The Google TPU

Deployed in Google datacenters since 2015
4 «  “Purpose Built” actually works - Only hard to use if
accelerators was designed for something else

]]j]]_ -

\
. Could we use TPU-like ideas for HPC? 3 Lol
|

Partial Sums

» Specialization will be necessary to meet energy-efficiency ]
and performance requirements for the future of DOE science! | % %% ” % Done
Measured  inpat s ead at once,and hey it
W tt TOPS/S GOPS/S /Watt On_chip ?2516) accumucllator RA,Ms.d hey Y
Model | MHz atts GB/S | 1o
Idle | Busy 8b FP 8b FP y
Haswell | 2300 41 145 2.6 1.3 18 9 51 51 MiB
NVIDIA K80 560 24 98 -- 2.8 29 | 160 8 MiB
TPU 700 28 40 92 -1 2,300 34 28 MiB

Notional exascale system:
2,300 GOPS/W =>7? 288 GF/W (dp) - a 3.5 MW Exaflop system!




AWS Graviton2 processor
« 4x the vCPUs

« 7x CPU performance

« ~2x performance/vCPU

Amazon AWS Graviton CustomARM SoC (and others)
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AWS CEO Andy Jassy:

“AWS isn't going to wait for the
tech supply chain to innovate
for it and is making a statement
with performance comparisons
against an Intel Xeon-based
instance. The EC2 team was
clear that Graviton2 sends a
message to vendors that they
need to move faster and AWS
is not going to hold back its
cadence based on suppliers.”




Hardware Generators: Enabling Technology for Exploring Design Space

Co-Develop Hardware
and Algorithm

Together with Close Collaborations with Applied Math & Applications

Chisel RISC-V OpenSOC
DSL for r‘apid prototyping Open Source Extensible Open Source fabric
of circuits, systems, and ISA/Cores To integrate accelerators

arch simulator components

Chisel

And logic into SOC

Software Hardware
Compilation Compilation

v

S
FPGA AsIC
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_ Superconducting z ;L:_‘ — Quantum %}—8 Architecture
" RISC-V =| ™ am|- |SA : Exploration

Simulation

Active
~ Sensors




Research platform: 96-core Tiled CPU on FPGA o ARCHITECTURE
SC2016 Demo (accidentally Sunway-like architecture emulation) oo

2 people spent 2 months to create

» Z-Scale processors connected in a
Concentrated Mesh

4 Z-scale processors

e 2x2 Concentrated mesh with 2
virtual channels

* Micron HMC Memory

http://www.codexhpc.org/?p=367




Putting Architecture Specialization to work for

 But what are the right specializations to include?

 What is the cost model (we know we cannot afford
to spin our own chips from scratch)

* Leverage the Open Source and ARM IP Ecosystem:
— IP is the commodity (not the chip)!!!

* What s the right partnershlp/economlc model for

the future of HPC?

Towards Extreme Heteroaenei



Project 38 -- Background

DOD and DOE recognize the imperative to develop new mechanisms for
engagement with the vendor community, particularly on architectural
innovations with strategic value to USG HPC.

Project 38 (P38) is a set of vendor-agnostic architectural explorations involving DOD, the
DOE Office of Science, and NNSA (these latter two organizations are referred to in this
document as “DOE”). These explorations should accomplish the following:

® Near-term goal: Quantify the performance value and identify the potential costs of

specific architectural concepts against a limited set of applications of interest to
both the DOE and DOD.

Long-term goal: Develop an enduring capability for DOE and DOD to jointly explore
architectural innovations and quantify their value.

Stretch goal: Specification of a shared, purpose built architecture to drive future

DOE-DOD collaborations and investments. (purpose-built HPC by 2025)

Internal
COTS

Design &

Production
Traditional DOEg-p Aggressive

Procurement \VVendor

Innovative
USG

r



Recapping Key P38 Technology Features ,\I\

innovative USG BERKELEY LAB

* Fixed Function Accelerators & COTS IP (Extreme Heterogeneity)

* RISC-V and ARM cores
* Fixed function FFT (Generated by SPIRAL)

* Word Granularity Scratchpad Memory (Gather Scatter):

* Gather-scatter within processor tile
* more effective SIMD

* Hardware Message Queues (Lightweight Interprocessor Communication)
* Gather-scatter between processor tiles
* Async between tiles to eliminate overhead of barriers




George Fann & Yuan Zheng

General-Purpose: Tensor Contractions on Word Granularity SPM

Register File KNL Stride-k Performance
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Arbiter —1000 —2000 4000 8000 — 16000 — 32000 —64000

runs the Number of Bandwidth waste Bandwidth waste
contraction SIMD lanes for loading the t3 for the entire
o or v in inner loop application
1 40 70 40 0.2 yes 8 55% 36%
2 60 70 40 0.2 yes 8 100% 65.4%
3 65 70 40 0.2 yes 8 700% 457.8%
4 40 70 40 0.1 yes 8 154% 100.7%
I 5 40 70 40 0.2 yes 16 166% 109%




Create Hardware Features to Accelerate Broadly usec

Numerical Algorithm Primitives

®* Accelerate commonly used primitives for
interprocessor communication

— Queues & DAGs commonly used in pseudocode , (ARE) (AFE) (AKE) [AFE) [ARET
/0>

— Why not make them REAL? (in design library) OO Q:. ‘ . . .

Example Pseudocode

. . - POTRI
Algorithm: triangularSolve (Kale/Charm++) 7/ - - -
Input: Row myRows] /- i b b ’ - Inter'Th read Latency
Output: Values x[] Cj g; @ - N Ao
-\ -
if any DataMessage msg arrived then [ i < S.7X 1
| receiveDataMessage(msg) St emote Exchange

for each Row r in independent rows do : ‘O

computeRow(r,0) /
while th di d -
while there are pending rows do 2l

e peneng < RISCV-SoC
wait for DataMessage msg
receiveDataMessage(msg) m x86

end (3t+6) t t | |
0 100 200 300 400 500

Algorithm 4: Local Triangular Solve 600

r
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Example of CoDevelopment of Hardware and Software:

SuperLU Dependency Tracking
—— update 6000

flow (o)
m% @ @ 91% |71 DGEMV/TRSMV
row2 5000 | \ - [ OMP 4
1=3]°® ° Parallel efficiency
4 e 6 0 O S, 4000 {
° e @\ ?@ - 7% <4 N
6 o o — d .
7 ° oo o0 o 3000 | 49%
=
0123456 7 e I
1 _omp alom1c { omp taskloop E— 2 000 |
0.8 0.8 |
2 0.6 206 IOOO '
EOA E()A-
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"B 4 16 64
0 v R - E Number of cores
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Benefit of MsgQ’s on KNL-like architecture

memory[(memory|memory |memory|memory|memory |memory|memory
slice slice slice slice slice slice slice slice

OpenMP
MsgQ
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)
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A I ATB/s BW_limi\ g Speedup 8x____
Algorithm: Redesign SuperLU algorithm to use MsgQ 102 1
instead of atomics to track dependencies. Mng can é:enable a further 20
Performance: scaling! MsgQ TriSolve

— 12x lower overhead per message than OpenMP | |
— 4x faster than OpenMP for 64cores 10120 2::6 29 2|12 518

— Potential for 8x-20x further scaling Number of cores




Recoding Engine, Chien (ANL)

Recode: Regex 1-lane Performance and Energy Efficiency

- 100000
400 B CPU (1 thread) B UDP (1 lane)
350
10000
300 =
? (3]
= 250 2 1000
= 200 g
@ 100
® 150 3
= =
100 v 10
50 §
0 = 1T &
AP P S P\ 0\ e e ge0™ R —

®  7xfaster per lane than x86, 64 lanes => ~450x faster than single x86 thread
®  Recode engine (UDP) scales to ~150 Gbps for a 64-lane Recode engine (<<1 watt total)
®  128tile chip could achieve 20 Thps total line rate; 256 tiles => 40 Tbps

®  Large pattern sets supported with NFA, and scale-out

Extreme, Scalable Regex at 10-40 Tbps




SNAPPY: Sparse Matrix Compression Accelerator

Matrices Visualization
g7jacle0 Bytes per Value
18
16
Xenonl 14 8x reduced
12 Off-chip
10 Bandwidth
8 -
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2
0 [ m Value
£ S + A &
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Q @6 Q + =
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Recoding Engine, Chien (ANL/U.Chicago) and Dilip Vasudevan (LBNL)

BERKELEY LAB



Fixed Function Accelerators Design Study

Dark Silicon

 Adopt SmartPhone SoC Strategy --
mix fixed-function accelerators with
programmable cores

 Target commonly used scientific
primitives/libraries
— BLAS (level 1,2,3)
— FFT (FFTW or SPIRAL interface)




FFT Example With FFTx (Francetti, Popovic, Canning)

Single FFT Accelerator Resource

® Assumptions: Spiral HW Generator
— 1GHz @ 14nm technology node
— 2M point transform (data off-chip)

— HPC Challenge Benchmark: Single precision
(Float32) complex, out-of-place

® Limit: 100 GB/s off-chip memory
— 16k points on-chip engine
— Analytic model for FP limit ~1.5TFLOPs SP
— 4.5mm? area for compute @ 14nm

For EFT of size N ® Limit: 1TB/s off-chip memory
— Storage =N * operand_size — ~10k MADD + ~5k add -> 15k FP@lGHZ
— Compute =5/2 * N * log2(N) FLOPs Analytical model for FP limit ~15TFLOPs SP




FFT Radix 2 RTL generated by SPIRAL - @14nm

Run RTL through synthesis to get accurate power/area/timing

Area (mm2) Delay (ps) Speed (MHz)
4 b 2090 2,084.24 208217 7
" 35 Z . et g 530
2;033.62
E 3 a ket :::: 202498 < 520 /
£25 £190 — g - 2 g 510
g 7 7 18 E ' B ® 500 zﬁ o 7
z 7 g 1940 g 4370 49420 538 P,
E po 126 ‘g 7 48457 3%‘%% 484.08
(V! : 098 AR 777777777777 a7 7777777777777 7777777757777 7777777 [7] y y
g 0.73 o 480 w079 40—
- 05 059 P -
a3 4 1840 470
4
) ———a———@ 2 4 8 16 2 64 2 4 8 16 2 64
. 4 8 16 32 64 Streaming Length (# of words) Streaming Length (# of words)
) #8 8 Point FFT 3232 Point FFT 88 Point FFT 3232 Point FFT
938 Point FFT#32 Point FFT ®64 Point FFT #1024 point FFT 64 64 Point FFT 1024 1024 point FFT 64 64 Point FFT 1024 1024 point FFT

Chip-layout at 14nm using Mentor Design Synthesis Flow

« Shows 2x improved density improvement over analytic model, but 2x lower clock
* Floating point multiplier is the Critical path around 1900 ps leading to
« 500 MHz design for standard cell based synthesis
Improved StdCell library (better than OpenSDK) could result in further improvements




Results for RISC-V FFT Accelerator for CryoEM

Benchmarking FFT Accelerator for image analysis (Donofrio, Fard)

[ ovucion | opeodel 3 2

fft_config 10b Configures FFT parameters
fft_status 01b Reads FFTAccel status registers
fft_start 11b Starts FFT processing
fft_stop 00b Stops FFT processing
PCPI

valid |
iNSN[31 ;0] =—
rs1[31:0] =—
rs2[31:0] = FFT

wr Accel
rd[31:0]

wait

==
Detector / Microscope In:

Original Image

ready

Created RISC-V Core with FFT ISA Extension

RISC-V+FFT Accel 126x faster than x86 host
—FFT on Intel Core i7-5930K @ 3.50GHz: ~265ms
—FFTAccel (Floating): ~2.10ms
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No more half measures, Walter.

Full Measure

Full Custom Acceleration for Targeted Science
(Industrializing use of Anton or GRAPE-like technology)




FPGA vs. ASIC

|r!_" B T

Cost for first ASIC (NRE):  $2V-$15M

Cost for first FF:hG-A (NRE): $2,500-$7,500 Cost for 20,000t : $150-$250
Cost for 20,000t : $2,500-$7,500 ’
o Area Efficiency: 10x FPGA

Energy Efficiency : 10x-100x FPGA




Example Algorithm-Driven Design of Hardware Accelerators
Example: LS3DF/Density Functional Theory (DFT)

25%+ of DOE
workload is
Density
Functional
Theory (DFT)

« What: Design the hardware accelerator
around the target algorithm/application

— Purpose-built acceleration
— Lab-led reference design

Why: Huge opportunities to improve
performance density and efficiency

— FFT hardware accelerator 50x-100x higher
performance density than GPU or
CPU+SIMD (using SPIRAL generator)

* How: Use Density Functional Theory (DFT)
as the target for this experiment Exp. Data Analysis Fusion (Cont. or PIC)

1. Large fraction of the DOE workload
2. Mature code base and algorithm

3. LS3DF formulation minimizes off-chip
communication and scales O(N

i

BERKELEY LAB



The DFT kernel for each fragment

Communication Avoiding LS3DF Formulation — Scales O(N)

............... Interior area

d . “~—Buffer area
"..'.........:

Artificial surfe
Fragment (2x1) passivation

hGi, ) =y, |H|y)

-

FPGA

h(i, j)=(v;|H|y,)

Sub_diag, *

O(N? Log(N))

Comm bound if non-local

Hpsi, *

Precond. CG step ~

3D parallel FFT

o TSQR & Choelesky
Projection, * ZGEMM
Line minimiz. 0(N3)
onth s — | Compute-bound
Sub_diag, *

A/

LS3DF O(N) Algorithm Formulation
Minimizes off-chip Communication

N
- A
rrrrrrr ""|

BERKELEY LAB

One patch per FPGA
400 bands/patch

Compute Intensive Kernels
Targeted for HW Specialization




Von-Neumann Instruction Processors vs. Hardware Circuits

(must redesign for static dataflow and deep flow-through pipelines)

Von Neumann CPU Dataflow (FPGA, GraphCore etc.

0un Bl [ oo

u""‘" 2 \, s~ \ ‘ —~ b

1| \,-\ P~
]

FPGA (Field Programmable Gate Array): Granularity
of these operations and wires are single bits

= 2"R;-(0,0,0)
-= Ru -n-1)(0,0,0)
+= C * R_n.1)(+1,0,0)

CGRA (Coarse Grain Reconfigurable Array):
Programmability & ALUs at word granularity : 3? Zs- S{:_:ﬂ‘,,}fﬂ’m

p,.0) -=C*2* R[,=n](0,0,0)

improves speed and density!! O 4= G @10
D, = [t=n+1] ,O,+
(Cerebras, GraphCore, SambaNova, LPU)

h.0) -= C * 2 * Ry, (0,0,0)
,0) += C " R[l=n](o,0,‘1)

pgisters

ASIC or Chiplet (custom circuit): Another factor of

10x on density and energy efficiency.



Algorithm Reformulated as Custom Circuit

Von Neumann CPU Dataflow (FPGA, GraphCore etc.

GEMM

iFFT1D

See Also Torsten Hoefler “StreamBLAS” for FPGA




Architecture Specialization for Science

(hardware is design around the algorithms) can’t design effective hardware without math

Materials CryoEM Genomics Digital fluid
Density Functional Accelerator Accelerator Accelerator
Theory (DFT) LBNL detector

Use O(n) algorithm 750 GB / sec
Dominated by FFTs Custom ASIC near 1024-layers

String matching 3D integration
Hashing Petascale chip
2-8bit (ACTG)
FPGA solution

detector

FPGA or ASIC General / special

HPC solution




Post CMO Device Technology

Accelerating the pace for discovery
for the future of Microelectronics




Many Options for New Device Technology

Borkar-Shalf Criteria

TABLE 1. Summary of techology options for extending digital electronics.

1. Gain
2. Signal to Noise

3. Scalability

4. Manufacturability

OSTP Report 2015: John Shalf
Robert Leland and Shekhar Borkar

~

A

BERKELEY LAB

Improvement Class | Technology Timescale Complexity Risk Opportunity
Architecture and Advanced energy management Near-Term Medium Low Low
software advances
Advanced circuit design Near-Term High Low Medium
System-on-chip specialization Near-Term Low Low Medium
Logic specialization/dark silicon Mid-Term High High High
Near threshold voltage (NTV) operation Near-Term Medium High High
3D integration and Chip stacking in 3D using thru-silicon vias (TSVs) | Near-Term Medium Low Medium
packaging
Metal layers Mid-Term Medium Medium Medium
Active layers (epitaxial or other) Mid-Term High Medium High
Resistance reduction | Superconductors Far-Term High Medium High
Crystaline metals Far-Term Unknown Low Medium
Millivolt switches (a Tunnel field-effect transistors (TFETSs) Mid-Term Medium Medium High
better transistor)
Heterogeneous semiconductors/strained silicon | Mid-Term Medium Medium Medium
Carbon nanotubes and graphene Far-Term High High High
Piezo-electric transistors (PFETSs) Far-Term High High High
Beyond transistors Spintronics Far-Term Medium High High
(new logic
paradigms) Topological insulators Far-Term Medium High High
Nanophotonics Near/Far-Term Medium Medium High
Biological and chemical computing Far-Term High High High




Comparing CMOS Technology Alternatives

Nikonov & Young
32b|t adder L o” TN

l - —

/ Constant*
Spln SWD HEru=.'rgy><DeI'ew

torque I'.

--------------

Energy Intensity

ENERGY [J]

1.E-15

1.E-16

Today’s CMOS .

Technology -
\

MOSFET

ansition probability=0.01
Cap. per inverter=0.57fF

TFET advantage at low clock rates

(SN [OES TR CR LI ) Bl (need 10-100x more parallelism)

0.1 1 10
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Multiscale Modeling to ccelerate Post-CMOS Development

Characterizing materials, analyzing devices, understanding impacts on circuits,
architectures, systems and applications.

Current Drive,
switching energy,
transients

Material Physics
Carrier Mobility

Clock-Rates,
Power, Area

Junction Physics,
i |-V curves

O penSC

Length Scale

yserm rdﬁ&O’

%\rchltectural Analog .
i i i i Materials

Simulation Simulation Device Physics Junction Physics Phyeins

Junctions

Systems Compact Models

Bog Fos 9
Processor/System: Circuit/Std. Cell: One Device: One Junction: Bulk Material:
~10k-1B Circuits 10-100 Devices ~1M Atoms ~100k Atoms ~100 Atoms

A holistic end-to-end modeling approach is required




Gap: Connecting and Scaling

Accelerated feedback path to focus device and material discovery process

Application Switch Speed, Power,

Performance Area, Fan-out, Interface-level . .
System-Power Stabilit Losses/Performance Materials Metrics
A ;| I Length Scale
%yvm PARA t . g @
rchltectural . ( = :
Simulation Simulation i i Junction Physics Materials

Physics

Systems _ Circuits_ ¥ Dact Models Junctions |
LT 41%3 g ,A Materlals
N e N i S
R Y el
Processor/System: Circuit/Std. Cell: One Device: One Junction: Bulk Material:
~10k-1B Circuits 10-100 Devices ~1M Atoms ~100k Atoms ~100 Atoms

Length Scales




Integrated Plan to Accelerate Microelectronics Discovery

End-to-End Acceleration of Discovery and Evaluation of New Devices

Materials Discovery

Computational Design

Synthesis

Characterization

ME Transistor

Device Design
Fabrication
Parametrics

Architecture

] T
¥ ofe L & | s
; &
e

RTL/Gate Simulator
Power
Delay

Arch. Level Simulator
TDP, EDP

National User Facilities for Metrolog
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N sc National Energy Research
Scientific Computing Center
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UNIVERSITY OF CALIFORNIA
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l Physical, Chemical, Materials and Computer Sciences



New Breakthroughs in Transistor Technology

Require Fundamentally New Principles of Operation

A More sensitive switch: MESO Magneto-Electric Switch
Modulated by Inverse Spin Hall Effect instead of Thermionic Emission

vormee tone | TN S
Off vs MOSFET

I
: 86,000 Materials on the |
I Materials Project :

p—
| On - A !
~ : \ / 38,335 with no bandgap I

w MESO b
8 J : \ / 8,423 with full spin-polarized !
AN = : bandstructures :
a0 3 L e TS i
@) ! \ / 3,817 GGA Half-Metals |
- C o e
Qo] S ————— [

- : 910 with ICSD Provenance |

() ! and likely ground state |

Over 140 Potential Half-Metals
for Experimental Investigation

r



PARADISE: post-Moore Architecture and Accelerator Design Space Exploration

George Michelogiannakis & Dilip Vasudevan

- . . \
®* Multiple devices, memories, and other “post Systems
Moore” technologies in development

L 4
* Evaluating each in isolation misses big picture [ Logic Blocks 2 A
® Devices can be better designed with high-level metrics b= -

® Architects can evaluate how exploit new technologies | g[ - %m = —
Until now, we lacked the tools to do so >C"fu'ts s, g Eggsy W<

systematically and rapidly for many technologies :m ”4 iig | -
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PARADISE: post-Moore Architecture and Accelerator Design Space Exploration

George Michelogiannakis & Dilip Vasudevan
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The Sum of the Parts is Greater than the Whole

New Architecture
+

New Devices

New devices and materials «

New architectures and packaging




Skyrmions “bags” for Multi-Valued Logic

Four type of skyrmion bags moving by STT to check
skyrmion Hall effect.

We considered only STT

¢ 1 Ipitial magnetization

m

_
From this results, we can check velocity while Hall effect S(0) S(1)

dominant case and edge effect dominant case. — ‘
: o- BB E

400nm

uis 15m/s on this simulation.

S(2) S(0,S(1))

Skyrmion
number 1 0 -1 1




Skyrmion-based Spiking Neural Networks

Z. He et al., 1705.02995v1 (2017) Dilip Vasudevan & Mi Young Im
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Conclusions

* Think more seriously about how to put
specialization productively to use for science

— Requires deep understanding of applied mathematics
and the underlying algorithms to be successful

* Reevaluate the business/economic model for the
design and acquisition of HPC systems

* Accelerate the development of materials, devices,
and systems for post-CMOS electronics




Beyond-Moore Computing Directions

Post CMOS
Devices/Materials

Evaluate new devices
using simulation
across scales

Heterogeneous
Architectures

Specialized
accelerators for
performance / enerqy

New Models of
Computation

Quantum algorithms,
fools and testbeds, for
science applications

Workload Analysis, Testbeds, Deployment




Data Movement Challenge

Photonics and Advanced Packaging

http://www.padalworkshop.org/




Data Movement Costs:

Energy to move data proportional to distance. Power is near chip thermal limits

Energy Efficiency of copper wire: /;ﬁ_.
— Power = Frequency* Length / cross-section-area

1000

=9-2008 (45nm)
=#-2018 (11nm)

Picojoules Per 64bit operation
S
o
L

Q & . - - QD & <&
G <(\/0 S & & & & &

— Wire efficiency does not improve as feature size shrinks

Energy Efficiency of a Transistor:
— Power =V? * frequency * Capacitance
— Capacitance ~= Area of Transistor
— Transistor efficiency improves as you shrink it

Gordon Keeler
DARPA ,,/"

s

B
MOS Transistor

Net result is that moving data on wires is
starting to cost more energy than computing
on said data (interest in Silicon Photonics)

>

POWER (W)
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Package Performance is Pin Limited

Rent’s Rule: J. Poulton: NVIDIA

Number of pins = K x Gates? (IBM, 1960)
K =0.82, a = 0.45 for early Microprocessors

High SERDES rates run
counter to end of
Dennard Scaling

10000

1000

=
o
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Picojoules Per 64bit operation
=
o

POWER (W)

e

42008 (45nm)
=#-2018 (11nm)

Gordon Keele(
DARPA PIBES

’

total power per package



Diverse Node Configurations for Datacenter Workloads

Data Mining
6-links: HBM
15 links: NVRAM
(capacity)

* 4 links: CPU
(branchy code)

Inference Graph Analytics

« 16 links to TOR 16 links HBM
(streaming data) e 8links TOR

» 8 links HBM (weights) e 1Llink CPU ©

1 link: CPU




Disaggregated Node/Rack Architecture

Disaggregated rack

Current server

’ cru) cru) /erufcry )/

C’P(/ L / cpa/ crv/cre/

I | Pool and compose

Py / Py /

/e

cres /

Current rack

Most solutions current disaggregation solutions use Interconnect bandwidth (1 — 10 GB/s)
But this is significantly inferior to RAM bandwidth (100 GB/s — 1 TB/s)




Photonic MCM (Multi-Chip Module)

Fiber carrying 0.5 -1 Tb/s

4 Fiber coupler
pitch: 10s of un

—4

High-Density fiber coupling array
with 24 fibers = 6-12 Tb/s bi- v
directional = 0.75 - 1.5 TB/s Photonic SiP

‘ Through-Silicon Viag-{T! 3‘?»‘573:7"6‘ ygrps
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G P U metalization layer J“"""‘; = ;L‘='% — ‘
. L e e
e A =11 |
Silicon inte rposer 1024 data links / HBM stack @ 500MHz

Package substrate

Optical switch




Photonic MCM (Multi-Chip Module)

Fiber carrying 0.5 -1 Tb/s Sk
NV
M

Packet

Switching MCM
4 Fiber coupler

pitch: 10s of un

—4

High-Density fiber coupling array
with 24 fibers = 6-12 Tb/s bi- v
directional = 0.75 - 1.5 TB/s Photonic SiP

{ Through-Silicon Viag(TSWs)y w8 grrms-
! I

\ Fre— |
G P U metalization layer i““—"‘; — ;L:-% =
L See

aps . [ == |
Silicon interposer 1024 data links / HBM stack @ 500MHz

Package substrate




Case for Disaggregation from a Workload Perspective

Workload Logical Node Photonic MCM Connectivity Map Custom Node Connectivity
Connectivity Through Optical Reconfiguration

1| 2| 3| 4] 5] 6/ 7| 8 9[10{11[12|13|14]15]|16|17|18]19|20|21|22|23|24|25

raining
Inference
Data Mining
Graph

GPU TOR HBM
Virtual “Pin” destination for GPU MCM

Graph Analytics




Intra-node bandwidth steering

Introduce low-radix optical circuit switches

to the OC-MCM topology
— 4x4 to 8x8 realizable with today’s technology

CMP

CMP

Switch

‘Switch

— Tens of switches can be collocated on a single chip

Slower reconfiguration compared to packet
switching

— Reconfiguration takes microseconds

— But traffic patterns are persistent for long
periods (minutes to hours!)

But transparent for packets

— No buffering for point-to-point means Time-of-Flight
latencies

— Extremely energy efficient to reconfigure
— Minimize marooned resources

GPU

GPU

GPU

GPU
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PINE: Photonic Integrated Networked Energy Efficient Datacenters

Resource Disaggregation to custom-assemble diverse accelerators for diverse workload requirements

1) Energy-bandwidth

2) Embedded silicon
photonics into OC-MCMs

3) Bandwidth steering for
Custom Node Connectivity

optimized optical links

1 Tb/second per fiber

A

CPU/GPU Packet
EEE Switching MCM

ENLITENED

Q20 @©

CHANGING WHAT'S POSSIBLE

Bergman

Johansson
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[ Optically Interconnectivity for Deep Disaggregation
MCM can be reconfigured to accelerate different applications
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Conclusions

* Think more seriously about how to put
specialization productively to use for science

— Requires deep understanding of applied mathematics
and the underlying algorithms to be successful

* Reevaluate the business/economic model for the
design and acquisition of HPC systems

* Accelerate the development of materials, devices,
and systems for post-CMOS electronics




Beyond Moore Computing Taxonomy

Symbolic Computation,

Arithmetic,
Logic

Digital.

Neuro-

Inspired
Cognitive Computing,
Pattern Recognition ~

Combinatorial/NP,
Annealing/Optimization,
Simulated Atoms




Hardware Specialization and the Move Towards
Extreme Heterogenous Acceleration

Make Heterogeneous Acceleration Productive for Science




