# James Sethian Receives Prestigious Norbert Wiener Prize in Applied Mathematics

January 1, 2004

James Sethian, head of the Mathematics Department in CRD and a professor of mathematics at the University of California, Berkeley, has been awarded the Norbert Wiener Prize in Applied Mathematics by the American Mathematical Society (AMS) and the Society for Industrial and Applied Mathematics (SIAM). The prize, presented Jan. 8 at the joint AMS-SIAM meeting in Phoenix, is awarded for an outstanding contribution to "applied mathematics in the highest and broadest sense."

Sethian’s award marks the eighth time the Norbert Wiener Prize has been awarded since 1970. The prize was last awarded in 2000, and one of the two recipients was Alexandre Chorin, a colleague of Sethian’s who also has a joint appointment in LBNL’s Mathematics Group and UC Berkeley’s Math Department.

According to information distributed at the AMS-SIAM meeting awards ceremony, Sethian was honored “for his seminal work on the computer representation of the motion of curves, surfaces, interfaces, and wave fronts, and for his brilliant applications of mathematical and computational ideas to problems in science and engineering.”

His work has influenced fields as diverse as medical imaging, seismic research by the petroleum industry, and the manufacture of computer chips and desktop printers. AMS and SIAM provided the following descriptions of Sethian’s work and its importance:

“A particularly noteworthy aspect of Sethian's work is that he pursues his ideas from a first formulation of a mathematical model all the way to concrete applications in national laboratory and industrial settings; his algorithms are currently distributed in widely available packages,” the AMS and SIAM noted.

“Sethian's work is a shining example of what applied mathematics can accomplish to benefit science as a whole.

“Sethian’s earliest work included an analysis of the motion of flame fronts and of the singularities they develop; he found important new links between the motion of the fronts and partial differential equations. These connections made possible the development of advanced methods to describe front propagation through the solution of regularized equations on fixed grids. “Sethian (with S. Osher) extended this work through an implicit formulation, resulting in a methodology that has come to be known as the ‘level set method,’ because it represents a front propagating in n dimensions as a level set of an object in (n+1) dimensions. Next, Sethian tamed the cost of working in higher dimensions by reducing the problem back down to its original dimensionality. This set of ideas makes possible the solution of practical problems of increasing importance and sophistication and constitutes a major mathematical development as well as an exceptionally useful computational tool with numerous applications. (Sethian is also the author of a book entitled “Level Set Methods” published by Cambridge University Press.)

**Contact**: JASethian@lbl.gov. More information about Sethian’s work can be found at <http://math.berkeley.edu/~sethian/>.

**About Computing Sciences at Berkeley Lab**

The

**Lawrence Berkeley National Laboratory**(Berkeley Lab)

**Computing Sciences**organization provides the computing and networking resources and expertise critical to advancing the Department of Energy's research missions: developing new energy sources, improving energy efficiency, developing new materials and increasing our understanding of ourselves, our world and our universe.

ESnet, the

**Energy Sciences Network**, provides the high-bandwidth, reliable connections that link scientists at 40 DOE research sites to each other and to experimental facilities and supercomputing centers around the country. The

**National Energy Research Scientific Computing Center**(NERSC) powers the discoveries of 7,000-plus scientists at national laboratories and universities, including those at Berkeley Lab's Computational Research Division (CRD). CRD conducts research and development in mathematical modeling and simulation, algorithm design, data storage, management and analysis, computer system architecture and high-performance software implementation. NERSC and ESnet are Department of Energy Office of Science User Facilities.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the DOE’s Office of Science.

**DOE’s Office of Science** is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.