Special Symposium to Showcase Postdocs' Research
January 30-31 Event Features Wide Range of Emerging Research
January 14, 2020
Twenty-two postdoctoral fellows in the Computing Sciences Area have been chosen to present their research during a two-day symposium that is the culmination of a targeted communications training program designed specifically for postdocs. The symposium, open to the wider Berkeley Lab community, takes place January 30-31 in Wang Hall (Building 59), room 3101.
The program will showcase ongoing research projects in exascale computing; machine learning; data management and analysis for experimental science; modeling and simulation of complex scientific problems; computer networking; and quantum computing.
“Developing excellent communications and presentation skills is one of the most important things that a young scientist can do,” said David Brown, director of the Computational Research Division at Berkeley Lab. “We created this educational program to provide our postdocs with communications training, mentorship, and coaching sessions along with an opportunity to present their research in a public forum.”
Speakers and Talks
Thursday, January 30, 2020
9:00 a.m., Hugo Brunie – Mixed Precision Tuning on HPC Applications
9:30 a.m., Michael Rowan – Use of CUDA Profiling Tools Interface (CUPTI) for Profiling Asynchronous GPU Activity
10:00 a.m., Muaaz Awan – GPU-BSW: A GPU Based Sequence Alignment Algorithm for Accelerating Bioinformatics Applications
10:30 a.m., Nan Ding – An Instruction Roofline Model for GPUs
11:00 a.m., Wenjing Wang –Bilevel Optimization and Data Analysis for Efficient Tuning of High Energy Physics Event Generators
11:30 a.m., Jangho Park – Input Structure Selection for Time-Series Prediction with Machine Learning
1:00 p.m., Reetik Sahu – Predicting Daily Groundwater Levels with Deep Learning Models
1:30 p.m. Venkitesh Ayyar – Building Compact Convolutional Neural Networks for Signal-Background Classification in Particle Physics Experiments
2:00 p.m., Yu-Hang Tang – GraphDot: A GPU-Accelerated Python Package for High-Throughput Graph Kernel Computation
2:30 p.m., Daniel Murnane – Graph Neural Networks for Particle Tracking
3:00 p.m., Bashir Mohammed – DeepRoute: A Deep Reinforcement Learning approach for Dynamic Network Routing Optimization and SDN on Chameleon Testbed
Friday, January 31, 2020
9:00 a.m., Mike MacNeil – Distributed Digital Volume Correlation by Optimal Transport
9:30 a.m., Zhe Bai – Computed Tomography (CT) Image Registration and Segmentation for Traumatic Brain Injury (TBI) Analysis
10:00 a.m., Jie Luo – An Alternative Architecture for Computing with Exponential Acceleration
10:30 a.m., Adam Peterson – Numerical Construction of Vortices in a Strongly Coupled Superconductor
11:00 a.m., David Williams-Young – Parallel Shift-Invert Spectrum Slicing for Symmetric Self-Consistent Eigenvalue Computation
11:00 a.m., Don Willcox – Towards Exascale Supernovae Simulations
1:00 p.m., Doreen Fan – Modeling Type Ia Supernovae: The Key to Understanding the Cosmic Universe
1:30 p.m., Katie Klymko – A Low Mach Number Fluctuating Hydrodynamics Model for Room Temperature Ionic Liquids
2:00 p.m., Revathi Jambunathan – 2:00 pm Towards Exascale Modeling of Pulsar Magnetospheres Using WarpX
2:30 p.m., Roberto Porcu – A Hybrid PIC-DEM Approach for Multi-Phase Computational Fluid Dynamics
3:00 p.m., Vincenzo Gulizzi – High-order Numerical Schemes for the Exascale
About Computing Sciences at Berkeley Lab
High performance computing plays a critical role in scientific discovery. Researchers increasingly rely on advances in computer science, mathematics, computational science, data science, and large-scale computing and networking to increase our understanding of ourselves, our planet, and our universe. Berkeley Lab’s Computing Sciences Area researches, develops, and deploys new foundations, tools, and technologies to meet these needs and to advance research across a broad range of scientific disciplines.